

Product Description

Sirenza Microdevices' SNA-176 is a GaAs monolithic broadband amplifier (MMIC) housed in a low-cost surface mountable stripline package. At 1950 MHz, this amplifier provides 12dB of gain when biased at 50mA.

External DC decoupling capacitors determine low frequency response. The use of an external resistor allows for bias flexibility and stability.

These unconditionally stable amplifiers are designed for use as general purpose 50 ohm gain blocks. Also available in chip form (SNA-100), its small size (0.33mm x 0.33mm) and gold metallization makes it an ideal choice for use in hybrid circuits.

SNA-176

DC-10 GHz, Cascadable GaAs MMIC Amplifier

Product Features

- Cascadable 50 Ohm Gain Block
- 12dB Gain, +13dBm P1dB
- 1.5:1 Input and Output VSWR
- Operates From Single Supply
- Low Cost Stripline Mount Ceramic Package
- Hermetically Sealed

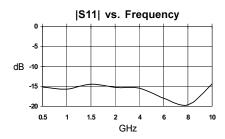
Applications

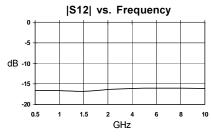
- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite

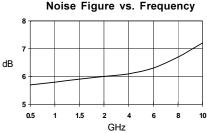
Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
G _P	Small Signal Power Gain	dB dB dB	850 MHz 1950 MHz 2400 MHz	11.5	12.5 12.0 11.8	
G _F	Gain Flatness	dB	0.1-8 GHz		+/- 0.5	
BW3dB	3dB Bandwidth	GHz			10.0	
P _{1dB}	Output Power at 1dB Compression	dBm	1950 MHz		13.0	
OIP ₃	Output Third Order Intercept Point	dBm	1950 MHz		26.0	
NF	Noise Figure	dB	1950 MHz		6.0	
VSWR	Input / Output	-	0.1-10 GHz		1.5:1	
ISOL	Reverse Isolation	dB	0.1-10 GHz		16	
V _D	Device Operating Voltage	V		3.3	3.8	4.3
I _D	Device Operating Current	mA		45	50	55
dG/dT	Device Gain Temperature Coefficient	dB/°C			-0.0015	
R _{TH} , j-l	Thermal Resistance (junction to lead)	°C/W	Cunning - 4 MHz		420	

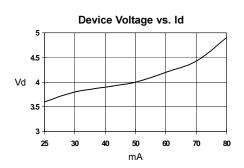
Test Conditions:

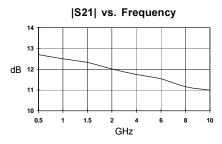
 $V_s = 8 V$ $R_{sus} = 82 Ohms$ $I_{D} = 50 \text{ mA Typ.}$ T. = 25°C OIP_3 Tone Spacing = 1 MHz, Pout per tone = 0 dBm $Z_s = Z_1 = 50$ Ohms

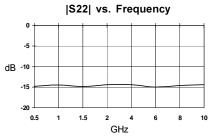

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights reserved.

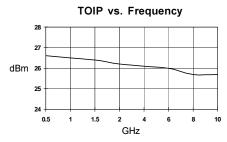

Phone: (800) SMI-MMIC




SNA-176 DC-10 GHz Cascadable MMIC Amplifier

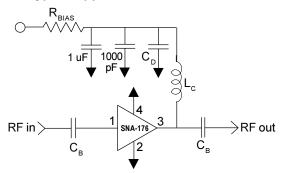

Typical Performance at 25° C (Vds = 3.8V, Ids = 50mA)

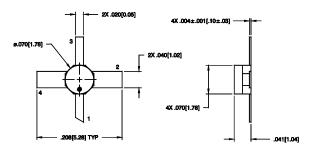




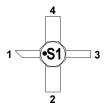
Absolute Maximum Ratings

7 10001010 1110711		
Parameter	Absolute Limit	
Max. Device Current (I _D)	70 mA	
Max. Device Voltage (V _D)	6 V	
Max. RF Input Power	+10 dBm	
Max. Junction Temp. (T _J)	+150°C	
Operating Temp. Range (T _L)	-40°C to +85°C	
Max. Storage Temp.	+150°C	


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

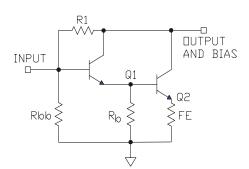

Bias Conditions should also satisfy the following expression: $I_{D}V_{D}<(T_{J}-T_{L})\ /\ R_{TH^{J}}\ j\text{-}I$

SNA-176 DC-10 GHz Cascadable MMIC Amplifier


Typical Application Circuit

Part Identification Marking

The part will be marked with an "S1" designator on the top surface of the package.



Application Circuit Element Values

	Reference		Frequency (Mhz)				
ı	Designator	500	850	1950	2400	3500	
	СВ	220 pF	100 pF	68 pF	56 pF	39 pF	
	C^{D}	100 pF	68 pF	22 pF	22 pF	15 pF	
	L _c	68 nH	33 nH	22 nH	18 nH	15 nH	

Recommended Bias	Resist	or Value	s for I _D =	=50mA
Supply Voltage(V _s)	6 V	8 V	10 V	12 V
R _{BIAS}	43 Ω	82 Ω	120 Ω	160 Ω
Note: R _{BIAS} provides DC bias stability over temperature.			rature.	

Simplified Schematic of MMIC

I	Pin#	Function	Description
	1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
	2, 4	GND	Connection to ground. For optimum RF performance, use via holes as close to ground leads as possible to reduce lead inductance.
	3	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.

Part Number Ordering Information

	Part Number	Reel Size	Devices/Reel
	SNA-176-TR1	7"	1000
	SNA-176-TR2	13"	3000
	SNA-176-TR3	13"	5000

522 Almanor Ave., Sunnyvale, CA 94085 Phone: (800) SMI-MMIC http://www.sirenza.com

3