

Models 575B & 578B Source Locking Microwave Counters

EIP Microwave, Inc.

2731 North First Street, San Jose, CA 95134

TEL: (408) 433-5900 TWX: 910-338-0155

Manual Part Number: 5580032-01 Printed in U.S.A., February 1988

575B: CCN 1809 578B: CCN 2009

		•	

Printing History

New editions incorporate all update material since the previous edition. The date on the title page changes only when a new edition is published. If minor corrections and updates are incorporated, the manual is reprinted but the date and edition number on the title page do not change.

FIRST EDITION February, 1988

Certification

EIP Microwave certifies that this instrument was thoroughly inspected and tested, and found to be in conformance with the specifications noted herein at time of shipment from factory.

Warranty

EIP Microwave warrants this counter to be free from defects in material and workmanship for one year from the date of delivery. Damage due to accident, abuse, or improper signal level is not covered by the warranty. Removal, defacement, or alteration of any serial or inspection label, marking, or seal, may void the warranty. EIP Microwave will repair or replace at its option any components of this counter which prove to be defective during the warranty period, provided the entire counter is returned PREPAID to EIP or an authorized service facility. In-warranty counters will be returned freight prepaid; out-of-warranty units will be returned freight COLLECT. No other warranty other than the above warranty is expressed or implied.

Table of Contents

PAGE
Section 3, (Continued)
General Purpose Interface Bus Instruction Format
Formal Definition of Instructions
Description of Available Commands
Section 4, Theory of Operation General
Field 5-2
Section 6, Troubleshooting Signature Analysis 6-1 Free Running 6-1 Program Controlled 6-3 Self Diagnostics 6-3 Keyboard Controlled Circuit Tests 6-4 Tests 6-6 Significant Addresses, I/O Ports 6-8 Significant Addresses, RAM 6-10 Troubleshooting Trees 6-12

Table of contents, continued

PAGE		PAGE
Section 7, Adjustments and Calibration	Section 10, (Options
General7-1Power Supply Adjustments7-1YIG DAC Calibration Process7-3Time Base Calibration7-9Temperature Compensated Crystal7-9TCXO Calibration7-10	Option 01,	Digital-to-Analog Coverter (DAC)01-1 Specifications01-1 Operation01-1 Theory of Operation01-2 Calibration01-6 Reference Loop/DAC Parts List01-9
Display Intensity	Option 02.	Power Measurement
General	Option 03, 04, 05	Time Base Oscillators
Band 2	Option 06,	Extended Frequency Capability
Section 9, Functional Description and Illustrated Parts Breakdown Reference Designation		GPIB Operation
A100 Counter Interconnect	Option 09, 010,	Rear Panel Input
A102 General Purpose Interface Bus	Appendix A	A, Accessories
A106 Count Chain	Appendix E	3, List of Manufacturers

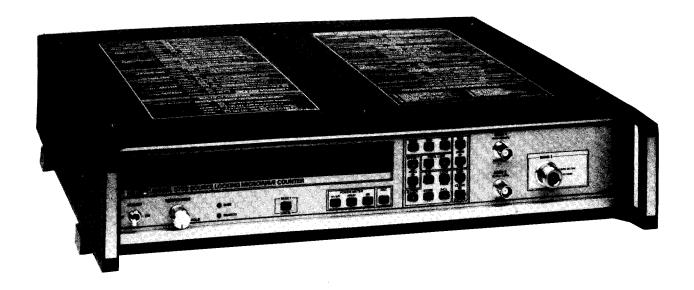

List of Illustrations

Figure Number		Page Figure		Page
3-1.	Front Panel, Model 575B	3-1	6-15.	200 MHz Test
3-2.	Front Panel, Model 578B	3-3	6-16.	Band 2
3-3.	Rear Panel		6-17.	Band 3
3-4.	Keyboard		6-17.	Band 3, continued
3-5.	Allowable Address Code		6-17.	Band 3, continued
			6-18,	Power Meter and Power Meter
4-1.	Counter Block Diagram, Simplified	4-1		Zero DAC
4-2.	Band 2 Converter Block Diagram,		6-18.	Power Meter and Power Meter
	Simplified	4-3		Zero DAC, continued
4-3.	Band 2 Converter Operation		6-19.	Source Lock 6-23
4-4.	Band 2 Operating Ranges		6-20.	Reference Loop 6-24
4-5.	Band 3 Converter, Simplified			
4-6.	Band 3 Operation, Simplified		7-1.	Adjustment Locations 7-2
4-7.	Band 3 Search for Signal		, ,,	rajustinont Eductions
4-8.	Determine Largest Signal			
4-9.	YIG Centering		9-1.	Assembly Locations in Counter 9-2
4-10.	Calculate N and VCO Frequency		9-2.	575B/578B Block Diagram 9-7
4-11.	Band 3 Signal Tracking		J 2.	575B/576B Block Blagram
4-12.	Source Lock Block Diagram		100-1.	Counter Interconnect Component
4-13.	Source Lock Driver		100-1.	Locator
4-14.	Coarse Tune DAC		100-2.	Counter Interconnect Schematic 100-5
4-14.	Coarse Tune DAC, continued		100-2.	Counter interconnect ochematic 100-3
4-15.	Phase Lock Flow Diagram		101-1.	Power Supply Function Diagram 101-1
4-15.	Phase Lock Flow Diagram, continued 4		101-1.	Power Supply Component Locator 101-4
4-15.	Phase Lock Flow Diagram, continued 4		101-2.	Power Supply Schematic 101-5
			101-3.	Tower Supply Schematic 101-5
6-1.	Microprocessor Free Running		102-1.	GPIA/GPIB Interface 102-2
	Signatures		102-2.	Allowable Address Codes 102-3
6-2.	Self Diagnostic Error Indications	6-3	102-3.	Location of GPIB in Counter 102-4
6-3.	Keyboard Configuration For Tests		102-4.	GPIB Component Locator 102-6
	Requiring Hexidecimal Inputs	6-4	102-5.	GPIB Schematic 102-7
6-4.	Keyboard Test Coordinates and			
	Signatures		103-1.	Programmable Frequency Divider
6-5.	Converter Ramp Test Signatures			Block Diagram 103-2
6-6.	I/O Addresses		103-2.	Overall Block Diagram 103-3
6-7.	Frequency Storage Registers	6-10	103-3.	DAC/Reference Loop Component
6-8.	Power Storage Registers			Locator
6-9.	Other Significant Registers	6-11	103-4.	DAC/Reference Loop Schematic 103-7
6-10.	Troubleshooting Test Equipment			
	(or equivalent)		104-1.	Phase Lock Assembly 104-1
6-11.	Main Troubleshooting Tree		104-2.	Loop Gain vs. Modulation
6-12.	Program Inoperative,			Frequency
6-13.	Keyboard		104-3.	Maximum Modulation Amplitude vs.
6-14.	Band I	b-16		Modulation Frequency to Maintain
				Phase Lock

List of Illustrations, continued

Figure	Page	Figure	Page
104-4	Phase Lock Component Locator 104-8	01-1.	DAC Option, Simplified
104-5.	Phase Lock Schematic	01-2.	Keyboard Control
		01-3.	DAC Board Update
105-1.	Microprocessor, Block Diagram 105-2	01-4.	DAC Troubleshooting Tree 01-7
105-2.	Microprocessor Component Locator 105-5	01-5.	Signature Analysis 01-8
105-3.	Microprocessor Schematic 105-7	01-6.	Reference Loop/DAC
			Component Locator 01-12
106-1.	Count Chain Functional Diagram 106-2	01-7.	Reference Loop/DAC Schematic 01-13
106-2.	Count Chain Component Locator 106-6		00.0
106-3.	Count Chain Schematic	02-2.	Power Meter Task
		02-2.	Power Meter Task, continued 02-4
107-1.	Gate Generator Timing Diagram 107-3	02-2.	Power Meter Task, continued 02-5
107-2.	Gate Generator Block Diagram 107-4	02-3.	Gate Generator Component
107-3.	Gate Generator Component Locator 107-8		Locator
107-4.	Gate Generator Schematic 107-9	02-4.	Gate Generator Schematic 02-9
108-1.	Converter Control Diagram	03/04/05	-1. Time Base Oscillator Option
108-1.	Programmable Frequency Divider		Specifications
	•	03/04/05	-2. Component Location, Time
108-3.	Converter Control Component		Base Option
100.1	Locator	03/04/05	-3. Time Base Option, Interconnection
108-4.	Converter Control Schematic 106-9		Diagram
400.4	Devel 2 Commenter Block Disgram 100 4	03/04/05	-4. Oven Oscillator Power Supply
109-1.	Band 2 Converter Block Diagram 109-4 Band 2 Converter Component		(A112) Component Location 03/4/5-3
109-2.	Locator		-5. Time Base Calibration
109-3.	Band 2 Converter Schematic 109-11	03/04/05	-6. Time Base Option Schematic 03/04/05-6
		06-1.	Frequency Extension Block
110-1.	Front Panel Display and Keyboard		Diagram
	Component Locator	06-2.	Location of Installed Band 4
110-2.	Front Panel Display and Keyboard	00 2.	Converter (A204)
	Schematic		001101101111111111111111111111111111111
111-1.	Memory Update Mode Sequence 111-2	010-1.	Side View of Counter with Option 10 Installed
111-2.	Front Panel Logic Block Diagram 111-3		option to motalisa 1,1111111111111111
111-3.	Front Panel Component Locator 111-6		
111-4.	Front Panel Logic Schematic		
203-1.	Band 3 Microwave Converter		
	Diagram		

Section 1 General Information

DESCRIPTION

The Model 575B and Model 578B Source Locking Counters are multi-function microprocessor based devices. These counters are not only able to perform frequency and (optionally) power measurement, but can tune and phase lock an external signal source over a wide range of frequencies. The basic frequency range of the 575B is 10 Hz to 20 GHz, while the 578B extends to 26.5 GHz.

When the 578B is equipped with Frequency Extension Capability (Option 06) and used with external accessories such as the Model 590 and a Remote Sensor, the counter is capable of operationg up to 110 GHz.

Frequency counting is divided into 4 bands. Band 1 is a high impedance input (1 M ohm/20 pF) and covers 10 Hz to 100 MHz with a sensitivity of 25 mV RMS. Band 2 is a 50 ohm input operating from 10 MHz to 1 GHz with a minimum sensitivity of -20 dBm. Band 3 is also a 50 ohm input and covers the range of 1 GHz to 20 GHz using the 575B, and 1 GHz to 26.5 GHz using the 578B, with sensitivity to -30 dBm. The 578B has optional frequency coverage that is designated as Band 4, and is subdivided into 5 frequency ranges, each with a typical sensitivity of -25 dBm.

Band 41	26.5 - 40 GHz
Band 42	40 – 60 GHz
Band 43	60 – 90 GHz
Band 44	90 - 110 GHz
Band 42, 43	50 – 75 GHz

An optional power measurement capability (Option 02) is available to supplement Band 3. With this option the counter can simultaneously display frequency to 100 kHz resolution, and power to .1 dB resolution. Typical accuracy of power measurement is 0.5 dB (at 25°C). Range is from sensitivity up to +10 dBm.

The other major feature of the 57XB counters is the ability to tune and phase lock virtually any frequency source that is capable of being electronically tuned. Two output ports are provided, one for coarse tune and one for phase lock. With these outputs a source can be locked from 10 MHz up to the maximum operating frequency of the counter. Frequencies can be selected to a resolution of 10 kHz and maintain the long term accuracy and stability of the internal time base crystal oscillator.

Using the keyboard (or IEEE 488-1978 bus control) the 57XB counters provide not only the major counter functions but a variety of other capabilities such as frequency offsets, power offsets, and a frequency multiple function. Optional capabilities can also include a digital to analog converter (DAC) and three high stability oven oscillators.

SPECIFICATIONS

GENERAL	
4.2.1.2.11.2	
RESOLUTION	Front panel keyboard input select .1 Hz to 1 GHz *
	0.1 Hz resolution Band 1 only. No frequency offset or multiplier in 0.1 Hz resolution.
MEAGURENE TIME	1 msec for 1 kHz resolution
MEASUREMENT TIME	1 sec for 1 Hz resolution
DISPLAY	12 digit LED sectionalized
ACCURACY	\pm 1 count \pm time base errors
TEST	Front panel selected diagnostics
SAMPLE RATE	Controls time between measurements variable from
	100 msec typ. to 10 sec. Switchable Hold position
	holds display indefinitely.
RESET	Resets display to zero and initiates new reading
OFFSETS	Keyboard control of frequency offsets (standard) and power
	offsets (standard with power measurement Option 02).
	Displayed frequency (power) is offset by entering value to 1 Hz resolution (0.1 dB power).
OPERATION TEMP.	0° C to 50° C
POWER	
FOWER	100/120/220/240/VAC \pm 10% (selectable) 50 to 60 Hz, 60 VA typical
WEIGHT, NET	~ 26 lb (11.8 kg)
WEIGHT, SHIPPING	~ 32 lb (14.5 kg)
DIMENSIONS (HWD)	3.5'' x 16.75'' x 14.0'' (89 mm x 425 mm x 356 mm)
ACCESSORIES FURNISHED	Power Cord and Manual

BAND 1	
RANGE	10 Hz to 100 MHz
SENSITIVITY	25 mV rms
IMPEDANCE	1 M ohm/20 pF
CONNECTOR	BNC (female)
MAX. INPUT LEVEL	120 V rms *
DAMAGE LEVEL	150 V rms *
	* (Above 1 kHz max. input will decrease at 6 dB/octave down to 3.0 V rms.)

10 MHz to 1 GHz
-20 dBm
30 dB
50 ohms Nominal
BNC (female)
+10 dBm
+27 dBm
<50 msec

BAND 3		
RANGE	1 GHz to 20 GHz (26.5 GHz for mo	odel 578B)
SENSITIVITY	-30 dBm: 1 GHz to 12.4 GHz: -25 dBm: 12.4 GHz to 20 GHz: -20 dBm: 20 GHz to 26.5 GHz:	
DYNAMIC RANGE	1 GHz to 12.4 GHz, 40 dB 12.4 GHz to 20 GHz, 35 dB	20 GHz to 26.5 GHz, 30 dB
IMPEDANCE	50 ohms Nominal	
CONNECTOR	Model 575B: Precisio Model 578B: DMS (fe	n Type N (female)
MAX. INPUT LEVEL	+10 dBm	
DAMAGE LEVEL	5 Watts, (+37 dBm)	
ACQUISITION TIME	< 200 msec Independent of frequer	ncv
AUTO AMPLITUDE DISCRIMINATION	(Automatic amplitude discrimination	
FM MODULATION	20 MHz p-p up to 10 MHz rate	
VSWR	< 2.5: 1 typical	
FREQUENCY LIMIT	Keyboard control of desired limits (largest signal within programmed limits to be separated by at leas signal more than 10 dB above desired MHz.	Tilts. Signal outside operating

TIME BASE	
FREQUENCY	10 MHz TCXO
AGING RATE	< 1 x 10-7 per month, 1 x 10 1 x 10-6 per year
SHORT TERM	< 1 x 10-e rms for one second averaging time
TEMPERATURE	< 1 x 10-6 0° to 50° C when set at 25° C
LINE VARIATION	< 1 x 10-7 ± 10% change.
WARM UP TIME	NONE
OUTPUT FREQUENCY	10 MHz, square-wave, 1 V p-p minimum into 50 ohms.
EXT. TIME BASE	Requires 10 MHz, 1 V p-p minimum into 300 ohms
PHASE NOISE	-95 dBc/Hz at 10 Hz from carrier

OPTION	91	92	93	94	95	96
SELECT BAND	41	42	43	44	42 or 43	41 or 42
Waveguide Band	Ka	U	E	w	v	a
Range	26.5-40 GHz	40-60 GHz	60-90 GHz	90110 GHz	50-75 GHz	33–50 GHz
Sensitivity (typ)	-25dBm (-20 dBm min)	-25 dBm	-25 dBm	-25 dBm	–25 dBm	–25 dBm
Waveguide Size	WR-28	WR-19	WR-12	WR-10	WR-15	WR-22
Waveguide Flange	UG-599/U	UG-383/U	UG-387/U	UG-387/U	UG-385/U	UG-383/U
Max. Input (typ)	+5 dBm	+5 dBm	+5 dBm	+5 dBm	+5 dBm	+5 dBm
Damage Level	+10 dBm	+10 dBm	+10 dBm	+10 dBm	+10 dBm	+10 dBm
Aquisition Time (typ)	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec

EXAMPLE: If desired measurement is 60 - 90 GHz, the required equipment is:

Model 578B with Option 06 - Extended Frequency and Model 590 - Extended Frequency Cable Kit with Option 93 - Remote Sensor

SOURCE LOCK	
FREQUENCY RANGE	10 MHz - Max. capability of counter.
RESOLUTION	10 kHz for phase lock freq. ≥ 50 MHz 2.5 kHz for < 50 MHz
ACCURACY	equal to counter's Time Base
LONG TERM STABILITY	Equal to counter's Time Base
MIN. PHASE LOCK SIGNAL LEVEL	Equal to counter's sensitivity
POLARITY	User select, 10 kHz, 2 kHz, or 500 Hz, or automatically selects widest bandwidth capable of locking.
LOCK TIME (TYP) COARSE TUNE	50 m sec + 1 counter acquisition time for source bandwidth greater than 100 Hz, Limited by source tuning speed below 100 Hz.
PHASE LOCK	200 m sec.
RECALLING STORED DATA	1 counter acquisition + 100 m sec. limited by source tunig speed.
OUTPUT DRIVE (MAX) COARSE TUNE OUTPUT	+ 10 V into 5 K ohm min.
PHASE LOCK OUTPUT	± 10 V into 5 K ohm min for source gain constant < 64 MHz/V. ± 75 MA into 10 ohm max for source gain constant < 3.2 MHz/MA. ± .6 V into 5 K ohm min for source gain constant ≥ 64 MHz/V. ± 4.5 MA into 10 ohm max for source gain constant ≥ 3.2 MHz/MA.
CAPTURE RANGE	
COARSE TUNE	Entire range of selected counter band limited by maximum output drive.
PHASE LOCK	Source gain constant X maximum output drive.

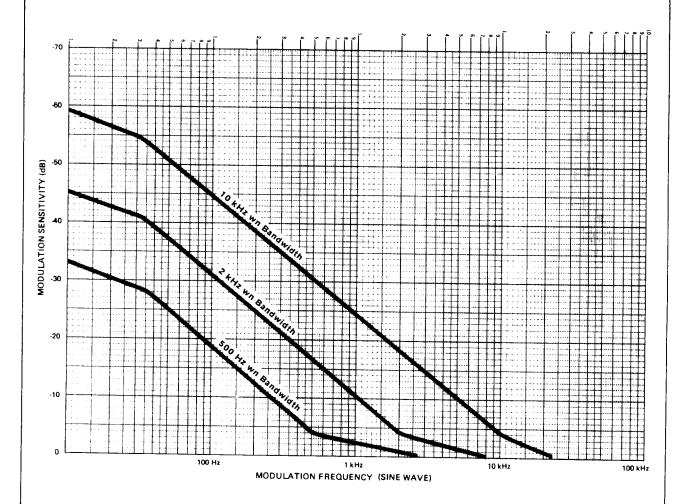
OUTPUT CONNECTOR

COARSE TUNE

Rear panel BNC, female

PHASE LOCK

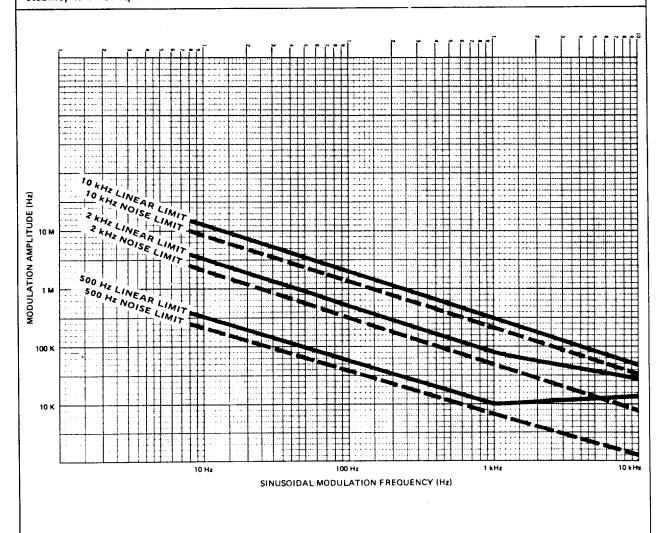
Rear panel BNC, female


PHASE LOCKED SPECTRUM

NOISE FLOOR vs INPUT FREQUENCY:

The noise floor extends from the carrier to approximately the loop bandwidth. Beyond this the noise floor decreases 12 dB / bandwidth octave. The noise floor is the greater of :

- 1. NOISE FLOOR = -70 dBC / Hz
- NOISE FLOOR = (20 log F -65) dBC / Hz where F = Input frequency in GHz


NOISE REDUCTION vs MODULATION FREQUENCY:

SOURCE CHARACTERISTICS (required)	
COARSE TUNE INPUT:	
BANDWIDTH	5 Hz minimum
TUNING SENSITIVITY	10 MHz / V minimum 10 GHz / V maximum
PHASE LOCK (FM) INPUT:	
BANDWIDTH	2 kHz minimum
TUNING SENSITIVITY:	
VOLTAGE DRIVEN INPUT	± 2 MHz / V minimum ± 1000 MHz / V maximum
CURRENT DRIVEN INPUT	± 0.1 MHz / mA minimum ± 50 MHz / mA maximum

MAXIMUM FM

The counter will still frequency stabilize if maximum FM is exceeded, but accuracy and long term stability will not equal the counter's time base.

OPTIONS

01 D TO A CONVERTER

DAC will convert any three consecutively displayed digits into an analog voltage output on rear panel.

02 POWER METER

1 to 18/26.5 GHz will measure sine wave amplitude to 0.1 dBm resolution from sensitivity to -20 dBm: 0,2 dBm resolution from -10 dBm to overload and display simultaneously with frequency. Power offset to 0.1 dB resolution, selectable from front panel; will not degrade performance of the counter.

TIME BASE OSCILLATOR OPTIONS:

	03	04	05	
AGING RATE/24 HOURS (After 72 hour warm-up)	< 5 x 10 ^{.9}	< 1 x 10 ^{.9}	< 5 x 10 ⁻¹⁰	
SHORT TERM STABILITY (1 second average)	< 1 x 10 ⁻¹⁰ rms	<1 x 10-10 rms	< 1 x 10 ⁻¹⁰ rms	
0° to +50°C TEMPERATURE STABILITY	< 6 x 10 ⁻⁸	< 3 x 10 ⁻⁸	< 3 x 10 ⁻⁸	
± 10% LINE VOLTAGE CHANGE	< 5 x 10 ⁻¹⁰	< 2 x 10-10	< 2 x 10-10	

06 EXTENDED FREQUENCY CAPABILITY - 578B

Use in conjunction with model 590 Frequency Extension Cable kit and a remote sensor.

09 REAR INPUT

10 CHASSIS SLIDES

Section 2 Installation

INSTALLATION

No special installation instructions are required. The counter is a self-contained bench or rack mounted unit and only requires connection to a standard 100/120/220/240V 50-60 Hz power line for operation.

CAUTION

Check current rating of counter fuse and setting of rear panel VAC selector switch before applying power to counter.

COUNTER IDENTIFICATION

This counter is identified by two sets of numbers, the model number 545B or 548B and a serial number that is located on a label affixed to the rear panel. Both numbers must be mentioned in any correspondence regarding this counter.

SHIPPING

Wrap the counter in heavy plastic or kraft paper and repack in original container if available. If the original container cannot be used, use a heavy (275-pound test) double-walled carton with approximately four inches of packing material between the counter and the inner carton. Seal the carton with strong filament tape or strapping. Mark the carton to indicate that it contains a fragile electronic instrument. Ship to the EIP address on the title page of this manual.

PERFORMANCE CHECKOUT PROCEDURE

The following procedure can be performed without special tools or equipment.

- Turn counter power switch off. Check fuse rating and setting of AC POWER switch on rear panel.
- 2. Connect power cord to 100/120 or 220/240 V, 50-60 Hz single-phase power source. The ground terminal on the power cord plug should be grounded.
- 3. Turn POWER switch on. Dashes will be displayed for about one second, followed by all 0's. This indicates that automatic self-check has been completed.
- Press O 1. Display should read 200 000 000 ±1.
 Press O 2. Display should read all 8's and all annunciators should be lit.
 Press O 3. Each display segment should light in turn.
 Press O 4. Each digit should light in turn.
- 8. This completes the performance checkout procedure.

Section 3 Operation

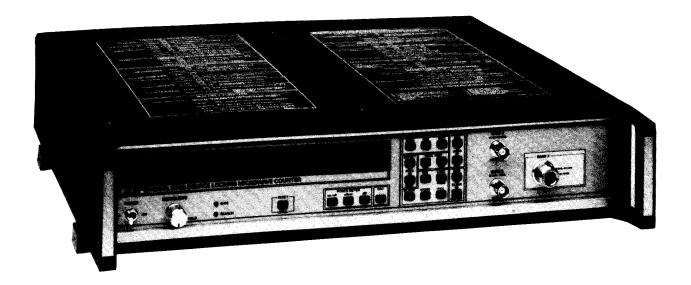


Figure 3-1. Front Panel, Model 575B

FRONT PANEL CONTROLS AND INDICATORS

DISPLAY

The 12 digit LED display provides a direct numerical readout of a measurement or of an input frequency. The frequency readout is displayed in a fixed position format that is sectionalized in GHz, MHz, kHz and Hz. Power information is displayed in dBm to 0.1 dB resolution, on the three right-most digits. When both power and frequency are displayed, frequency resolution is limited to 100 kHz.

POWER switch turns counter on.

SAMPLE RATE/HOLD varies time between measurements from 0.1 to 10 seconds (nominal). (Gate time is added to sample time, thus the minimum reading for 1 Hz resolution is 1.1 seconds.) The last reading is retained indefinitely in HOLD until Reset is issued.

GATE lights when the signal gate is open and a measurement is being made.

SEARCH lights when the counter is not locked to an input signal.

RESET manually overrides all controls, resets the counter and converter, and initiates a new reading.

OPERATING STATUS

The operating status of the counter is indicated by a series of LEDs. When the counter is displaying input data, instead of a measurement, the appropriate LED status indicator will flash.

- RMT lights to indicate that front panel controls are disabled, and that the counter is being controlled through the GPIB Bus interface.
- EXT REF lights to indicate the counter is set to an external time base reference.

CAUTION

When EXT REF lights it does NOT indicate that correct signal level has been applied.

- dBm lights to indicate that the Power Meter option (02) is active.
- FRQ LMT, LOW/HIGH lights when frequency limits for Band 3 operation have been selected.
- OFFSET, PWR/FRQ lights when power and/or frequency offsets are stored in the counter memory.
- Band 1, 2, 3, 41, 42, 43, 44 light to indicate which operating range has been selected.
 When any Band 4 annunciator is lit it indicates that the Extended Frequency Capability option (06) has been selected (Available on 578B only).
- DAC lights to indicate that the Digital-to-Analog Converter option 01 is active.
- MLT lights to indicate the multiplier function is active.
- LCK lights when the counter is phase locked.
- BW lights to indicate a phase lock loop bandwidth has been selected.

POWER METER/DAC OPTION KEYBOARD

Four keys control the operation of these options.

- Power Meter ON/OFF pushbutton activates/deactivates power meter.
- Power Meter OFFSET pus button activates the power offset function.
- dB pushbutton acts as a terminator for the input of power offsets.
- DAC pushbutton, followed by two digits (00–12), activates the DAC option. The number keyed in will select the most significant digit (00 = OFF, 01 = 1 Hz, 12 = 100 GHz).

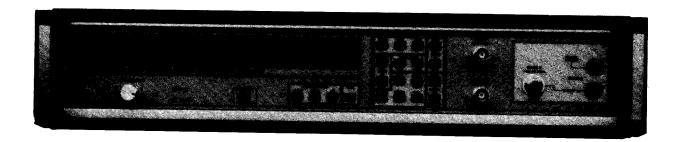


Figure 3-2. Front Panel, Model 578B

SIGNAL INPUT

Band 1 input connector (BCN female) has a nominal input impedance of 1 Meg ohms, shunted by 20 pF. It is used for measurements in the range of 10 Hz to 100 MHz.

Band 2 input connector (BNC female) has a nominal input impedance of 50 ohms. It is used for measurements in the range of 10 MHz to 1 GHz.

Band 3 input connector on the model 575B is a precision type N female. It is used for counter operation in the range of 1 GHz to 20 GHz. Model 578B has an APC-3.5 female connector that is used for operation in the range of 1 GHz to 26.5 GHz.

 Band 4 is used in conjunction with the Extended Frequency capability option (06), the Model 590 Frequency Extension Cable kit and a remote sensor. Remote sensors are options to the Model 590 and cover waveguide bands from 26.5 to 110 GHz.



Figure 3-3. Rear Panel

REAR PANEL CONTROLS AND CONNECTORS

- Spaces labeled BAND 1, BAND 2, BAND 3, BAND 4, and TO REMOTE SENSOR are used for those connectors in instruments equipped with Option 09, Rear Panel Input.
- TIME BASE ADJUST control is used with options 03, 04, or 05 only. Screwdriver adjustment allows
 precise setting of the internal ovenized crystal oscillator.

TIME BASE INT/EXT switch selects either the internal time base or an external 10 MHz reference.

TIME BASE connector (BNC female) allows monitoring of internal 10 MHz time base, or input of an external 10 MHz reference.

 DAC OUT connector provides a voltage analog to any specified three digits of frequency displayed, in instruments equipped with Option 01, D to A Converter.

GPIB connector is used with the IEEE 488 - 1978 General Purpose Interface Bus.

PHASE LOCK OUT connector (BNC female).

COARSE TUNE OUT connector (BNC female).

FUSE provides overload protection. Use a 1 amp slow-blow MDL type fuse for $100/120\,V$ operation. Use a .50 amp slow-blow FST type fuse for $220/240\,V$ operation.

VAC SWITCH sets the operating voltage of the counter to match power line. There are 4 settings: 100, 120, 220, and 240 VAC. Counter will operate at voltages within ±10% of selected line voltage, at frequencies of 50 to 60 Hz.

CAUTION

Switch setting and fuse rating must match power line voltage.

AC POWER connector accepts the power cord supplied with the counter.

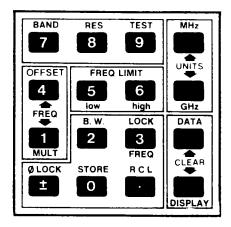
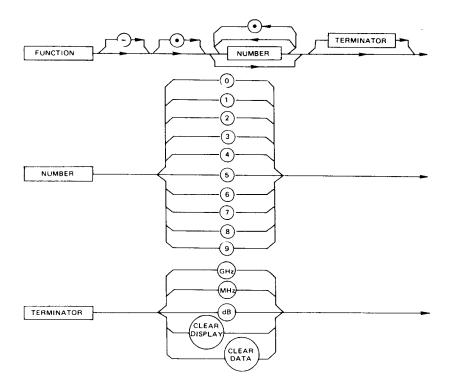



Figure 3-4. Keyboard

KEYBOARD

The keyboard consists of 16 pushbuttons that control major functions of the counter. Twelve keys are used for numerical data entry—the digits 0 through 9, the decimal point and the minus sign. Two keys (MHz and GHz) act as terminators for the input of frequency offset, frequency limits, or phase lock frequency. The CLEAR DATA and CLEAR DISPLAY keys are used to clear stored or displayed data. Twelve of the keys are also used to select the band, resolution, test function, frequency offset, frequency limits, multiplier, band width, lock frequency, phase lock, store, and recall functions.

The keyboard operation syntax is:

UNITS (MHz/GHz))
PRESS:	MHz	Completes Entry Sequence
PRESS:	GHz	Completes Entry Sequence
PRESS:	dB	Completes Entry Sequence
CLEAR	(DATA/DI	SPLAY)
Press:	CLEAR	Return "STORED" data of selected function to Power On state. Clears Limits (Low/High), Offsets, DAC, multiplier, band width, lock frequency, and stored phase lock information.
Press:	CLEAR	Clears display. Does not affect stored data. Restores counter to display measurement. Clears entry if counter is in data entry mode.
COUN.	TER CO	NTROL FUNCTIONS
BAND S	SELECTIC	ON
The ''B 575B or		Y followed by a numeric key enables the following band selection on model
PRESS:	BAND (10 Hz - 100 MHz Input
PRESS:	BAND (2 10 MHz – 1 GHz Input
PRESS:		3 1 GHz - 20 GHz (Model 575B) 26.5 GHz (Model 578B)
		tor flash and selected band number will light when chosen. This feature allows o be connected and selected in turn.
		78B equipped with Option 06, a 590 cable kit and appropriate optional remote is selected by:
PRESS:	BAND	4 X
X sh	ould be	a number between 1 and 4.

RESOLUTION/GATE TIME SELECTION

The "RESOL" key followed by a numeric key enables following resolutions. PRESS: 0 1 Hz RESOLUTION PRESS: 10 Hz RESOLUTION PRESS: 100 Hz RESOLUTION PRESS: 1 KHz RESOLUTION PRESS: 10 KHz RESOLUTION PRESS: 100 KHz RESOLUTION PRESS: 1 MHz RESOLUTION PRESS: 10 MHz RESOLUTION PRESS: 100 MHz RESOLUTION PRESS: 1 GHz RESOLUTION

0.1 HZ RESOLUTION

In order to extend the resolution to 0.1 Hz in Band 1, the gate time inside the counter is increased to 10 seconds. Therefore, if the count chain reads 11 after the 10-second gate period, then the frequency displayed is 1.1 Hz.

The significance of the digits on the front panel is shifted left three digits. If the frequency of the input signal is 9 MHz, the counter displays 9 GHz.

If the user changes the resolution during the 10-second gate period, the counter still has to wait for the 10-second gate to complete before it changes the gate time accordingly.

To change the counter gate time to 10-seconds through front panel:

- Select 'band 1'.
- 2. Enter "res", ".1".

To change the counter gate time to 10-seconds via GPIB:

Command the counter "B1R.1"

To change the counter gate time to 10-seconds via MATE (Option 13), enter the following commands:

- 1. "CLS :CH01"
- 2. "FNC ACS FREQ :CH01 SET FRES 0.1".

RESET

NOTE:

When the RESET key is pushed, the counter will reset the converter and basic counter. All stored information will not be altered. When the key is released, the counter will reacquire the input signal. It will take one reading after reacquisition even if the counter is in the hold mode.

PRESS: Local To reset converter and basic counter.

FREQUENCY LIMITS

Enables entry of frequency limits to 10 MHz resolution. The converter is reset after the entry sequence.

TO INPUT FREQUENCY LIMITS

	FREQ LIMIT	
PRESS:	low	Notice flashing annunciator and frequency low limit last entered.
PRESS:	#	Number keys corresponding to desired frequency low limit to 10 MHz resolution.
PRESS:	MHz GHz	To terminate input sequence. Notice FRQ LMT LOW annunciators solidly lit after terminator key is released.
PRESS:	FREQ LIMIT high	Notice flashing annunciator and frequency limit high last entered.
PRESS:	#	Number keys corresponding to desired frequency high limits to 10 MHz resolution.
PRESS:	MHz or GHz	To terminate input sequence. Notice FRQ LMT HI annunciator solidly lit after terminator key is released.
TO RECA	LL STORED LIMITS:	
PRESS:	FREQ LIMIT FREQ LIMIT	Stored frequency limit low/high is displayed on front panel.
PRESS:	CLEAR DISPLAY	Returns counter to display measurements.
TO REM	OVE FREQUENCY LIMITS	
PRESS:	FREQ LIMIT CLEAR DATA C	FREQ LIMIT CLEAR IN high DATA

High and low limits should be separated by at least 100 MHz.

DATA MANIPULATION FUNCTIONS

FREQUENCY OFFSET

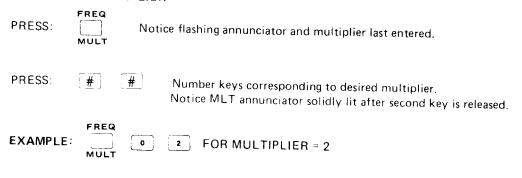
Frequency offset function enables the entry of a positive or negative frequency offset to 1 Hz resolution. The offset will be incorporated into the frequency measurement after the next gate.

TO INPUT FREQUENCY OFFSE	۲S
--------------------------	----

PRESS:	FREQ OFFSET	Notic	e flashing	annunciator and frequency offset last entered.
PRESS:	# .	Numb	oer keys co	orresponding to desired offset frequency to 1 Hz resolution.
PRESS:	MHz	OR	GHz	To terminate input sequence. Notice OFFSET FRQ annunciator solidly lit after terminator key is released.

TO RECALL STORED OFFSETS

	d offset is displayed.
PRESS: CLEAR PRESS: Return	ns counter to display measurements.


TO REMOVE FREQUENCY OFFSETS

PRESS: OFFSET CLEAR	OR OFFSET GHZ	OR FREQ OFFSET GHZ
---------------------	---------------	--------------------

MULTIPLY FUNCTION

The multiply function multiples the measured frequency by a positive integer up to 99. The result is displayed to 1 KHz resolution. The multiplier will be incorporated into the frequency measurement after the next gate.

TO ENTER A MULTIPLIER

TO CLEAR THE MULTIPLIER FUNCTION

TO RECAL	L MULTIF	LIER
PRESS:	FREQ MULT	Stored frequency multiplier is displayed on front panel.
PRESS:	DISPLAY	Returns counter to display measurements.
mX ±B		
By using th calculations.	e frequen	ncy offset and multiply functions the counter can automatically perform mX $\pm E$
The equation	n for the f	unction performed is:
Displaye	ed Reading	$g = mX \pm B$ where $m = Multiplier$ (0 to 99) entered from keyboard.
		X = Input frequency.±B = Frequency offset entered from the keyboard.
To do mX ±	B calculat	ion for m = 2, b = 70 MHz
PRESS:	FREQ	FREQ MHZ OFFSET
SOURCE L	OCKIN	G FUNCTIONS
PHASE LO	CK FRE	QUENCY
50 MHz, and entry sequer	d 2.5 kHz nce is ter	e lock frequency to 10 kHz resolution if phase lock frequency is above or equal to resolution if it is below 50 MHz. The counter will attempt to phase lock after the minated. The phase lock operation will terminate if the RESET key is pressed while ing to phase lock.
TO ENTER	PHASE LO	OCK FREQUENCY
PRESS:	LOCK	Notice flashing annunciator and phase lock frequency last entered.
PRESS:	#	Number keys corresponding to desired phase lock frequency.
PRESS:	MHz	or GHz To terminate input sequence. Notice LCK annunciator continues to flash while counter is attempting to phase lock. LCK annunciator will light solidly if phase lock is successful. If not, the LCK annunciator will continue to flash until lock is achieved or until the sequence is manually terminated.
TO RECALI	_ STORE	PHASE LOCK FREQUENCY
PRESS:	LOCK FREQ	Stored phase lock frequency is displayed on front panel.
PRESS:	CLEAR	Returns counter to display measurements.

TO RE	MOVE PH	SE LOCK FREQUENCY			
PRESS		OR OR OR			
After phase lock frequency is cleared, the coarse tune output will return to +5V and the phase lock output will return to 0V.					
		NOTE			
When the counter is attempting to phase lock, the information displayed on the front panel is the frequency the counter is attempting to phase lock to. During the phase lock process, if the RESET key is pressed, the counter will abort the process and return to regular measurement mode.					
The coarse tune output is returned to +5V only if the source lock frequency is cleared, otherwise it will stay at the same voltage it was last at. The phase lock output is returned to 0V when the counter is in phase lock mode.					
PHASE	LOCK	X Y			
Enables the counter to attempt to phase lock to the frequency last entered through the PHASE LOCK FREQUENCY function. The front panel displays the frequency the counter is trying to phase lock, and the annunciator flashes. If the phase lock process is successful, the annunciator will be solidly lit; if not, the annunciator will continue to flash until the function is manually terminated.					
The PHASE LOCK KEY is also used in conjunction with the RECALL function to enable the user to phase lock stored frequency expeditiously. (See description of RECALL function.)					
BAND	WIDTH				
The BW	key follow	by a numeric key enables the following bandwidth selections.			
PRESS:	BW	500 Hz loop bandwidth			
PRESS:	BW	2 kHz loop bandwidth			
PRESS:	BW	3 10 kHz loop bandwidth			
PRESS:	BW	Automatic loop bandwidth selection.			
Bandwidth 0 enables the counter to automatically select the phase lock loop bandwidth. When in BW0, the counter, during the phase lock process, will try to close the phase lock loop in the 10 kHz, 2 kHz and 500 Hz bandwidth sequentially. It will stop at the first bandwidth in which it can close the phase lock loop.					
TO RECALL STORED BANDWIDTH					
PRESS:	BW	Notice flashing annunciator, and last selected bandwidth number followe the bandwidth in Hz.	d by		
	DISPLAY	Returns counter to display measurements.			

STORE

Enables the storage of the current phase lock frequency, along with other important information. This function can be activated only after the counter has been phase locked. An error will occur if the function is activated when the counter is not phase locked. The other information stored is used to reduce the time required to phase lock when the stored phase lock frequency is recalled. There are a total of nine storage registers.

PRESS:

Notice flashing annunciator and current phase lock frequency to 100 Hz resolution.

Number key corresponds to the storage register in which the phase lock information is to be stored. The number should be between 1 and 9 inclusively.

RECALL

Enables the counter to perform one of these functions:

- 1. To display one of the stored phase lock frequencies;
- 2. To phase lock to one of the stored phase lock frequencies; or
- 3. To clear a stored phase lock frequency.

TO DISPLAY A STORED PHASE LOCK FREQUENCY

PRESS:	RCL	Notice flashing annunciator and the word rcl displayed on the front panel.
PRESS:	#	Number key corresponds to the storage register to be recalled. Notice the stored phase lock frequency to 100 Hz resolution, followed by the storage register number.
PRESS:	DISPLAY	Returns counter to display measurements.
TO PHASE	LOCK TO	A STORED PHASE LOCK FREQUENCY
PRESS:	RCL	Notice flashing annunciator and the word rcl displayed on the front panel.
PRESS:	#	Number key corresponds to the storage register to be recalled. Notice the stored phase lock frequency to 100 Hz resolution, followed by the storage register number.
PRESS:	Ø LOCK	The counter will attempt to phase lock to the recalled frequency. If the recalled frequency is outside the frequency range of the current band, the phase lock frequency register will not be altered. Otherwise, the phase lock frequency register will be updated with the recalled frequency.

TO REMOVE A STORED PHASE LOCK FREQUENCY

PRESS:	RCL	Notice flashing annunciator and the word rcl displayed on the front panel.
PRESS:	#	Stored phase lock frequency is displayed to 100 Hz resolution followed by the storage register number.
PRESS:	DATA	Stored phase lock frequency is cleared.

TEST SELECTION

The following tests will verify proper operation of most functional areas of the counter. At power on, the counter performs a RAM and PROM check. During these checks dashes are displayed until the checks have been completed.

RAM AND PROM CHECKS:

200 MHz SELF TEST

The processor writes a sequential bit pattern to each RAM location, then independently reads that pattern. Thus each bit in each location is checked. If the RAM check fails the display will show all "E's." This indicates that the RAM or the RAM decoding is faulty.

The PROM check verifies the PROM bit pattern. If the PROM check fails an error message will be displayed. This indicates that the PROM's or the PROM decoding is faulty.

If both RAM and PROM checks are passed, the counter will begin normal operation about one second after turn on. The counter will now display all 0's.

	TEST			
PRESS:		0	1	Notice display is 200 MHz. This verifies operation of the time base reference and it's associated circuits, the signal selection, the count chain, and the local oscillator.
LED TES	эт			
PRESS:	TEST	0	2	Notice all LED segments and yellow annunciators are lit. This verifies operation of all visual indicators.
LED SE	SMENT TE	ST		
PRESS:	TEST	0	3	Notice each segment of each display digit is lit in turn. The sample rate pot will change the rate, and may be adjusted. This checks the segment drivers.
DISPLAY	DIGIT TE	ST		
PRESS:	TEST	0	4	Notice all segments of each digit are lit in turn to verify that each digit operates independently. The sample rate pot will change the rate, and may be adjusted.
KEYBOA	RD TEST			
PRESS:	TEST	o	5	Notice display is 05. Press any key and display will indicate a two digit number showing the position of that key within the keyboard matrix thus checking keyboard operations.
TO EXIT	TECTO			
TOEXII	CLEAR			
PRESS:	DISPLAY	Toe	kit a test and	d return to normal operation.
To exit to	ests 1 throu ted.	gh 4, 6 a	and 7 one ca	in press any function key. This will exit the test and enter the func-

Tests 6 through 11 and 21 are used for calibration and troubleshooting.

MUTUALLY EXCLUSIVE FUNCTIONS

There exists in the counter some functions that are mutually exclusive, i.e., when one is active, the others cannot be active at the same time. The following is a list of such functions.

- 1. When self test is active, all other functions are inactive. The exception is in TEST 01, the RESOLUTION function continues to stay active. If any key is pushed when the counter is in self test, the TEST function will automatically be terminated.
- 2. The POWER METER function will be terminated whenever BAND1, 2, or 4 is selected.
- 3. The SOURCE LOCK function will be terminated when the RESET functions is activated.
- 4. The counter is not able to phase lock a source and take power readings at the same time. For the SOURCE LOCK and POWER METER functions, the last function to be activated will override the other function. For example, if the POWER METER function is on, and then the SOURCE LOCK function is activated, the POWER METER function will be turned off.

GENERAL PURPOSE INTERFACE BUS

The GPIB interface of the 575B/578B counters is fully compatible with the IEEE 488–1978 standard. With the GPIB interface, the counter can respond to remote control instructions and can output measurement results via the IEEE 488–1978 Bus interface. At the simplest level the counter can output data to other devices such as the HP 5150A Thermal Printer. In more sophisticated systems a calculator or other system controller can remotely program the counter, trigger measurements, and read results. Of course, a calculator or computer adds other benefits to a GPIB based measurement system. The calculator can manipulate data to compute the mean and standard deviation, check for linearity, and compare results to limits, or perform many other functions.

GPIB FUNCTIONS IMPLEMENTED

The GPIB interface function subsets implemented are:

INTERFACE FUNCTION	SUBSET	<u>DESCRIPTION</u>
SOURCE HANDSHAKE	SH1	complete capability
ACCEPTOR HANDSHAKE	AH1	complete capability
TALKER	Т5	basic talker, serial poll, Talk Only mode, unaddress if MLA
LISTENER	L3	basic listener, Listen Only mode, unaddress if MTA
SERVICE REQUEST	SR1	complete capability
REMOTE LOCAL	RL1	complete capability
DEVICE CLEAR	DC1	complete capability
DEVICE TRIGGER	DT1	complete capability

REMOTE LOCAL FUNCTION

When the counter changes from LOCAL to REMOTE or vice-versa, all the stored information is retained. The counter will operate in the same state as it was before the change. The only exception is when the counter is in the TEST mode, the TEST function is automatically terminated. When the counter is in REMOTE and LOCAL LOCKOUT is not active, the RESET key on the front panel keyboard acts as the return to local key.

DEVICE CLEAR FUNCTION

When DEVICE CLEAR or SELECTED DEVICE CLEAR GPIB bus command is received, the counter will revert to its power on state. For the counter's power on state, please see section on PROGRAM CODE SET.

DEVICE TRIGGER FUNCTION

When DEVICE TRIGGER GPIB bus command is received, the counter will initiate a new frequency reading cycle. The converter will not be reset. If the counter does not have a converter lock, the DEVICE TRIGGER will not be performed until a converter locked condition exists.

SETTING ADDRESS SWITCH

The counter employs a decimal address switch located inside the unit. This is set for decimal address 19 at the factory. To verify the switch setting without removing the top of the counter, simply initiate test 10; enter 9C04 and read the address on the display. After reading the address, terminate the test by pushing the clear display key.

The address switch is also used to put the counter in the Talk Only (to) or Listen Only (lo) mode. To put the counter in the Listen Only mode simply set the address switch to any number 41 or higher.

The counter can be put in four different modes of operation in the Talk Only mode. The following is a list of the address settings for entering these modes.

ADDRESS

MODE OF OPERATION

- 32 Continuous output determined by SAMPLE RATE control. Exponent in scientific format.
- 33 Continuous output fast active. SAMPLE RATE control inactive. Exponent in scientific format.
- 34 Continuous output determined by SAMPLE RATE control. Exponent in zero output format.
- 35 Continuous output fast active. SAMPLE RATE control inactive. Exponent in zero output format.

NOTE

In the Talk Only or the Listen Only mode, the address of the counter is always automatically set to decimal 0.

DEVICE DEPENDENT DATA INPUT

It takes a specific amount of time for the counter to process the input data (error checking, formatting, changing the mode of operation, etc.). To prevent the data rate of the bus from slowing down while the counter is doing input data processing, the data is accepted as soon as it is available on the bus, and it is temporarily stored in memory. The size of the storage memory is 100 characters.

The users of the GPIB interface need to be aware of the difference between accepting data and complying with it. If the counter is asked to output a reading before it has finished processing the input data, the output will be in error if the operator makes the assumption that the counter is in the mode that was just programmed. To prevent this, sufficient programmed delays must be provided, or use must be made of the counter's Service Request status byte. See Service Request (SR) command description.

GPIB INSTRUCTION FORMAT

<OP CODE> <NUMBER> <TERMINATOR>

OPERATION CODE or OP CODE can take any of the following formats:

<LETTER> <LETTER> or <LETTER> <DIGIT>

Example: FH (Frequency limit high) or B3 (band 3)

The NUMBER portion of the statement can take the form of any of the following:

<SIGN> <DIGIT STRING>

Example: -2457

<SIGN> <DIGIT STRING> · <DIGIT STRING>

Example: -3.483

NOTE: Spaces within the <OP CODE> and <NUMBER> portions of the instructions are always ignored.

The TERMINATOR allows the operator to choose the scale of an input number as well as implement special functions.

TERMINATOR = G/M/K/H/D/P/C/L

G, M, K, H, represent GHz, MHz, kHz and Hz respectively

D = dB, P = clear data, (equivalent to "clear data" key on keyboard)

C = clear display (equivalent to "clear display" key on keyboard)

L = phase lock (equivalent to "QLOCK" key on keyboard)

FORMAL DEFINITION OF INSTRUCTIONS

<OP CODE> <NUMBER> <TERMINATOR>

<OP CODE> :: = <LETTER> <LETTER> | <LETTER> <DIGIT>

<NUMBER> :: = <SIGN> <DIGIT STRING> |

<SIGN> <DIGIT STRING $> \cdot <$ DIGIT STRING $> \mid$

NULL

<TERMINATOR> :: = G | M | K | H | D | P | C | L | NULL

 $\langle SIGN \rangle ::= + |-|NULL|$

<DIGIT STRING> :: = <DIGIT> <DIGIT> <DIGIT>

<LETTER> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N |

O|P|Q|R|S|T|U|V|W|X|Y|Z

 $\langle DIGIT \rangle :: = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0$

PROGRAM CODE SET

Codes underlined indicate start-up conditions. These conditions are set by the device clear or selected device clear, or power on.

DISPLAY

- <u>DA</u> Display Active: Output Frequency Reading to Front Panel and Bus
- DP Display Passive: Output Frequency Reading to Bus only
- DN Display Normal

BAND

- B1 Band 1: 10Hz 100MHz
- B2 Band 2: 10MHz 1GHz
- B3 Band 3: 1GHz 20 GHz (Model 575B/26.5 GHz (Model 578B)
- B4 Band 4: (Model 578B / Option 06)

RESOLUTION

- R0 Resolution 0 = 1Hz
- R1 Resolution 1 = 10Hz
- R2 Resolution 2 = 100Hz
- R3 Resolution 3 = 1KHz
- R4 Resolution 4 = 10KHz
- R5 Resolution 5 = 100KHz
- R6 Resolution 6 = 1MHz
- R7 Resolution 7 = 10MHz
- R8 Resolution 8 = 100MHz
- R9 Resolution 9 = 1GHz

MEASUREMENT FUNCTIONS

- FA Fast Active (Ignore sample rate Pot)
- <u>FP</u> Fast Passive (Terminates FA)
- RS Reset Basic Counter and Converter. Take a new reading after reset.
- HA Hold Active
- <u>HP</u> Hold Passive

DATA MANIPULATION FUNCTIONS

- FO Frequency Offset. Take a new reading after data entry if counter not in hold.
- PO Power Offset. Take a new reading after data entry if counter not in hold.
- *OA Offset Active:
 - -Add Frequency Offset to Frequency Reading
 - -Add Power Offset to Power Reading if Power Meter Function is active
- OP Offset Passive (Terminates OA)
- ML Multiplier. Multiplies frequency readings by an integer number.

^{*}In Start-up Condition, although OA is Active, "0" (zero) Frequency and Power Offsets are programmed.

POWER METER

PA - Power Meter Option Active. Initiate a new gate.

PP - Power Meter Option Passive (Terminates PA)

*MEASUREMENT PARAMETERS

FH - Frequency Limit High. Basic counter and converter will be reset after data entry.

FL - Frequency Limit Low. Basic counter and converter will be reset after data entry.

SOURCE LOCKING FUNCTIONS

PF - Phase lock frequency. Counter attempts to phase lock after data entry.

PL - Initiates phase lock sequence. Equivalent to PHASE LOCK key on keyboard.

BW - Bandwidth. Selects phase lock loop bandwidth.

ST - Store. Equivalent to STORE key on keyboard.

RC - RECALL, Equivalent to RECALL key on keyboard.

<u>CA</u> - Coarse tune active. Source lock process operates normally.

CP - Coarse tune passive. Source lock process bypasses coarse tune process for faster source lock time.

SELF-TEST FUNCTIONS

TA - Test Active.

<u>TP</u> - Test Passive. (clear test function)

DATA FORMAT

EZ - Exponent Zero

ES - Exponent Scientific

DATA OUTPUT

BR - Output both frequency and power readings

FR - Output frequency readings only

PR - Output power readings only

SERVICE REQUEST

SR - Service request enable

DAC OPTION

DC - Select DAC option

^{*}Measurement parameters: Standard Software
Limits of 950MHz (LOW) and 18.5GHz (HIGH) (27GHz for Model 578) are featured in each counter at turn on.

DESCRIPTION OF AVAILABLE COMMANDS

DISPLAY

- DA Display Active Outputs readings to both front panel and GPIB bus.
- DP Display Passive Outputs readings to GPIB bus only. It will decrease the cycle time of the counter.
- DN Display Normal Resets display only; used for clearing error messages on the display.
 Cannot be used after verifying preprogrammed data such as Frequency Offsets or Frequency Limits. This OPCODE affects only the display.

BAND

- B1 Selects Band 1.
- B2 Selects Band 2.
- B3 Selects Band 3.
- B4 Selects Band 4. See Option 06.

RESOLUTION

- R0 thru
- R9 Resolution 0 thru 9 Picks the front panel resolution from 1Hz to 1GHz. Also chooses gate time which is related to resolution: 1Hz = 1 Sec, 10Hz = 100 Sec. 100Hz = 10 msec. 1kHz to 1GHz = 1 msec.

MEASUREMENT FUNCTIONS

- FA Fast Active Causes the counter to go into the fast cycle mode of operation. In this mode, the front panel sample rate/hold control is inactive and the fastest sample rate is attained. The counter will not go into the Fast Active mode of operation until Hold Active is disabled.
- FP Fast Passive Terminates FA.
- RS Reset Basic Counter and Converter Reacquires input signal and takes a new reading. Has the same function as manual reset button.
- HA Hold Active The counter stops taking readings and the last frequency and power readings are displayed and held. The counter can be directed to take one reading when it is in this mode by sending Device Trigger or Selected Device Trigger GPIB bus command to the counter. It will also update the reading if the RS mnemonic is received.
- HP Hold Passive Terminates HA.

DATA MANIPULATION FUNCTIONS

- FO Frequency Offset Enables entry of frequency offsets. (1 Hz resolution available.)
 A new gate will be initiated after data entry if counter is not in HOLD.
- PO Power Offset (See option 02.)
- OA Offset Active Add frequency offset to frequency readings. Add power offset to power readings if power meter function is active.
- OP Offset Passive Does not add frequency and power offset to readings.
- ML Multiplier Enables entry of a 2-digit frequency readings multiplier. The multiplier must be an integer between 00 and 99. The results are to 1kHz resolution. A new reading will be initiated after the data entry if the counter is not in HOLD. If the results of the multiplications are larger than, or equal to 999.999, 999, 000 GHz, the counter will output 999.999, 999, 000 GHz to the bus if asked to output readings.

POWER METER

- PA Power Active (See option 02).
- PP Power Passive (See option 02).

MEASUREMENT PARAMETERS

- FH Frequency Limit High Enables entry of frequency limit high (10 MHz resolution available). The basic counter and converter will be reset after the data entry.
- FL Frequency Limit Low Enables entry of frequency limit low (10 MHz resolution available). The basic counter and converter will be reset after the data entry.

SELF-TEST FUNCTIONS

TA - Test Active - Enables the counter to perform the selected test function by entering TA followed by two digits. When Test 05, 08, 09, or 10 is active and the counter is being asked to output data, the data that is displayed on the front panel is the data being output.

The output data format is as follows:

XXXXXXXXXXXCRLF

X = alpha-numeric

CR = carriage return

LF = line feed

For detailed descriptions of tests 01 through 09 and test 11, see the section on Keyboard Controlled Circuit Tests.

Test 10 operates in the following manner:

- 1. To activate Test 10 input TA10.
- 2. To read the data stored in a specific memory location, input the address of the memory location in a four digit hexadecimal number. Enable the counter to talk and then read data from the counter.
- 3. To alter the data stored in a certain memory location:
 - If 2, has been performed input the desired data for that memory location.
 - If 2. has not been performed input the memory address, followed by a two digit hexadecimal number.
- TP Test Passive Terminates test function.

SOURCE LOCKING FUNCTIONS

- PF Phase lock frequency. Enables entry of phase lock frequency to 10 kHz resolution if phase lock frequency is above or equal to 50 MHz, and 2.5 kHz resolution if it is below 50 MHz. The counter will attempt to phase lock after data entry.
- PL Initiates phase lock sequence. The counter will attempt to phase lock to the frequency specified in the phase lock frequency register.
- BW Bandwidth. Enables the selection of the phase lock loop bandwidth. To select the desired bandwidth, input BW followed by one decimal digit. The digit has to be between 0 and 3 inclusively.

BW 0 = automatic loop bandwidth selection.

BW1 = 500 Hz loop bandwidth.

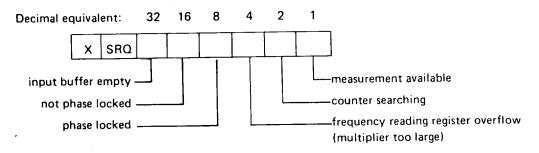
BW2 = 2 kHz loop bandwidth.

BW3 = 10 kHz loop bandwidth.

In BWO, the counter will try to close the phase lock loop in 10 kHz, 2 kHz and 500 Hz loop bandwidth sequentially. It will select the first bandwidth in which it is able to close the phase lock loop.

- ST Store. Enables the storage of the current phase lock frequency along with other important information related to phase locking that frequency. To store the current phase lock frequency, input ST followed by one decimal digit between 1 and 9 inclusively. The function can be activated only after the counter has been phase locked.
- RC Recall. Enables the recall of the information in one of the storage registers. Inputting RC, followed by one decimal digit between 1 and 9 inclusively, and terminating the string by the terminator L, enables the counter to attempt to phase lock to the frequency stored in one of the storage registers. Terminating the string by the terminator P will clear that storage register.
- CA Coarse tune active. Source lock process operates normally. The counter first goes through the coarse tune process to move the signal source's output to within 5 MHz of the desired frequency. Then the phase lock process takes over to attempt to close the phase lock loop. In this mode, the counter will perform properly even if the coarse tune output of the counter is not connected to the signal source.
- CP Coarse tune passive. Source lock process bypasses the coarse tune process for faster source lock time. This mode can be used if the source's output is close to the desired frequency.

DATA FORMAT


- EZ Exponent Zero output format.
- ES Exponent Scientific output format.

DATA OUTPUT

- $\mathsf{BR} \mathsf{Output}$ both frequency and power readings. (See section on output data format.)
- FR Output frequency readings only. (See section on output data format.)
- PR Output power readings only. (See section on output data format.)

SERVICE REQUEST

Service Request Enable - Enables the counter to send Service Request to the bus when a certain event has taken place in the counter. To enable the function, input SR followed by two decimal digits. The two digits are the decimal equivalent of the content of the eight bit status register. More than one bit of the status register can be set.

To disable the Service Request function, input SR00.

NOTE

Even when the Service Request function is disabled, the Service Request status byte will still be continuously altered to reflect the internal states of the counter.

EXAMPLE: To enable service request on measurement available or input buffer empty, send SR33.

DAC OPTION

DC - DAC Option (See option 01).

DATA OUTPUT FORMAT

The 575/578 transmit the following string of characters to output a measurement.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Format																		
EZ (Exponent Zero)	15	±	D	D	D	D	D	D	D	D	D	D	D	D	Ε	0	CR	LF
ES (Exponent SCI)*	±	D	D	D	D	D	D	D	D	D	D	D	D	D	E	D	CR	LF
Power**	16	15	15	15	15	15	ъ	ъ	ъ	15	±	D	D	D		D	CR	LF

Freq. + Power

• FREQ in EZ mode: ช±DDDDDDDDDDDDDDDD б ชชชชชชชชชชชชช

When the counter is in Test 05, 08, 09, or 10, the output will reflect the data on the display. The format is as follows:

XXXXXXXXXXXCRLF.

も = Blank

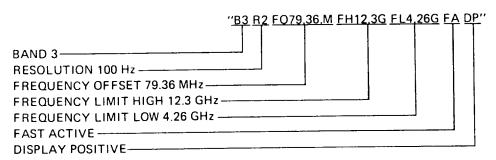
D = Digit

X = Alpha-numeric

CR = Carriage Return

LF = Line Feed

Under different output modes, the following counter outputs can be expected by a listener.


ОПТРИТ	COUNTER OPERATING	
MODE	MODE	OUTPUT
BR	PA	FREQ + PWR
	PP	FREQ
	TA01	FREQ
FR	PA	FREQ
	PP	FREQ
	TA01	FREQ
PR	PA	PWR
•	PP	-999.9
	TA01	-999.9
BR, FR		
or PR	TA 05, 08, 09, or 10	Data on front panel display

^{*}in Exponent Scientific one digit represents the position of the decimal point. Exponent digit can be either 0, 3, 6, or 9.

^{**}The power information always have the decimal point fixed for 0.1dB resolution.

PROGRAM EXAMPLES

The examples given here assume an address setting of decimal 19 or ASCII talk address "S" and listen address "3" for the counter. By addressing the counter to listen and sending the following program string, it sets up the following measurement conditions.

The following programs illustrate how controllers function with the counter. These programs cause the counter to make a series of frequency measurements. The calculators read the measurements into memory and print the results. The programs assume the counter Talk and Listen address is decimal "19."

HP 9825A	0:	dim A (10)
	1:	rem 7
	2:	wrt 719, "B3R2FO-4.55M"
	3:	wait 300
	4:	for I = 1 to 10
	5:	red 719, A (I)
	6:	prt A (I)
	7:	next I
	8:	end
HP 9845A	10:	OUTPUT 719, "B3R2FO - 4.55M"
	15:	WAIT 300
	20:	INPUT 719, A
	30:	PRINT "Frequency minus offset equals," A
	40:	GOTO 20
TEK 4051	10:	PRINT @ 19: "B3R2FO - 4.55M"
	20:	
	30:	PRINT "Frequency minus offset equals, "A
	40:	GOTO 20

The 9825A program will cause the counter to take a series of ten readings, print them on the 9825A paper tape and stop. Notice that an offset of 4.55 MHz is subtracted from each reading.

The program shown for the 9845A and TEK 4051 cause the counter to make a frequency measurement and print that measurement. To end the program, initiate a "STOP" command. This is accomplished on the 9845A with the key labeled "STOP." On the TEK 4051 use the key labeled "BREAK." To restart the program enter the RUN statement followed by the line number that is printed in the INTERRUPT message.

READING A MEASUREMENT

To read a measurement from the counter to a calculator, the counter must first be addressed to talk and the calculator to listen. The examples below indicate how a calculator may read a measurement from the counter.

The EIP counters can use two different modes. HA which takes one reading then waits for a reset command or a Device Trigger GPIB Bus Command. In this condition the counter is sent a reset or Device Trigger and (when addressed to talk) a new reading is output to the BUS. The counter will hold that particular reading on the display until another reset command or Device Trigger command is received. The other mode is HP or HOLD PASSIVE. In this mode data is read out in a normal BUS fashion. The display automatically updates corresponding to the sample rate chosen. In this condition successive readings can be output without generating a reset or Device Trigger command each time.

**ADDRESS CHARACTERS		ADDRESS CODES					
Listen	Talk		binary			decimal	
		5	4	3	2	1	*
SP	@	0	0	0	0	0	00
ļ !	Α	0	0	0	0	1	01
"	В	0	0	0	1	0	02
#	С	0	0	0	1	1	03
\$	D	0	0	1	0	0	04
%	E	0	0	1	0	1	05
&	F	0	0	1	1	0	06
•	G	0	0	1	1	1	07
(н	0	1	0	0	0	08
,	1	0	1	0	0	1	09
*	J	0	1	0	1	0	10
+	K	0	1	0	1	1	11
	L	0	1	1	0	0	12
_	M	0	1	1	0	1	13
	N	0	1	1	1	0	14
/	0	0	1	1	1	1	15
0	Р	1	0	0	0	0	16
1	a	1	0	0	0	1	17
2	R	1	0	0	1	0	18
3	s	1	0	0	1	1	19
4	Т	1	0	1	0	0	20
5	U	1	0	1	0	1	21
6	V	1	0	1	1	0	22
7	w	1	0	1	1	1	23
8	×	1	1	0	0	0	24
9	Y	1	1	0	0	1	25
:	Z	1	1	0	1	0	26
;	[1	1	0	1	1	27
<	/	1	1	1	0	0	28
=]	1	1	1	0	1	29
>	^	1	1	1	1	0	30

^{*} Decimal Talk/Listen Address is provided as a cross reference for those controllers which use decimal address.

Figure 3-5. Allowable Address Codes

^{**} Address characters in ASCII code.

DISPLAY ERROR MESSAGES

When an error occurs an error number will be displayed. The probable cause of each error is listed below.

OPERATOR ERRORS

The following error messages indicate an operator error.

- 01 Illegal Key Sequence.
- 02 A resolution number was not entered.
- 03 A band number was not entered; or the number entered was too large.
- 04 No power reading in current band.
- 05 Frequency limit high >18.5 GHz, 27 GHz (578B)
- 06 (Freq Limit Hi) (Freq Limit Lo) <100 MHz
- 07 Frequency Limit Low < .95 GHz (575B/578B).

80

- 09 Illegal test mode key sequence.
- 10 Illegal DAC key sequence.
- 11 Illegal Multiplier key sequence.
- 12 SERVICE REQUEST condition input error (GPIB only).
- 13 Option not installed.
- 14 Phase lock frequency out of range of current band.
- 15 Cannot store phase lock information. Counter not phase locked.
- 16 Storage register 0 does not exist.
- 17 Illegal BANDWIDTH key sequence.

NEW ERROR MESSAGES

ERROR 19: function not allowed in 0.1 resolution.

ERROR 20: access to TEST 10 or TEST 90 without privilege.

ERROR 30: EEPROM error.

ERROR 40 : DAC table error, cannot find YIG frequency.

ERROR 41: calibration frequency error.

ERROR 42: signal not found.

COUNTER ERRORS

The following error messages indicate a malfunction within the counter.

31	Check sum error	Section 1 PROM	C000-CFFF	A105, U14
32	Check sum error	Section 2 PROM	D000-DFFF	A105, U13
33	Check sum error	Section 3 PROM	E000-EFFF	A105, U17

• •		

Section 4 Theory of Operation

GENERAL

The 575B and 578B counters automatically measure and display the frequency of an input signal within the range of 10 Hz to 20 GHz for the 575B, and 10 Hz to 26.5 GHz for the 578B. They are also able to phase lock the input to the accuracy and stability of the counter's internal time base oscillator. In both models the frequency is divided into three bands.

BAND 1 operates from 10 Hz to 100 MHz. An impedance converter provides an input impedance of 1 M ohm, shunted by 20 pF.

BAND 2 operates from 10 MHz to 1 GHz, using a heterodyne down converter which converts the input signal into an output signal with a range of 10 MHz to 190 MHz.

BAND 3 operates in the microwave range of 1 to 20 GHz (or 26.5 GHz) and uses a YIG tuned heterodyne converter to translate the input frequency downward to an intermediate frequency (IF) of 127 MHz.

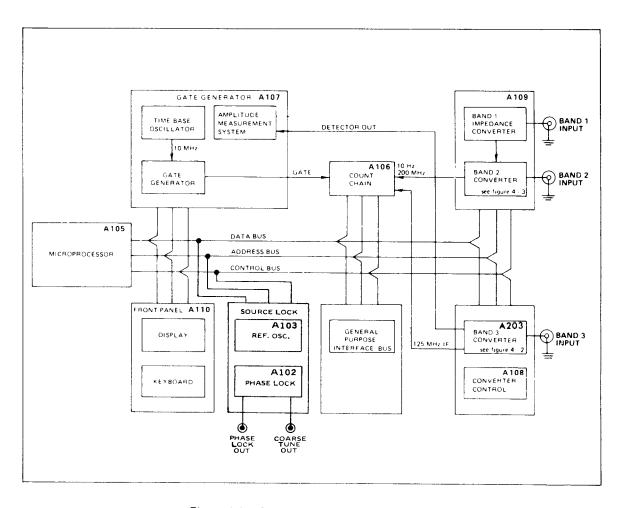


Figure 4-1. Counter Block Diagram, Simplified

BASIC COUNTER

Overall operation is controlled by the Microprocessor Assembly A105. This assembly contains an eight bit microprocessor, its control logic, and the system memory. It communicates with all other assemblies in the instrument by means of a triple bus system: the data, address, and control bus. On each assembly there is a Peripheral Interface Adaptor (PIA) which provides the interface between the bus system and the instrument hardware.

Frequency measurements are performed by comparing an unknown signal to a reference frequency, namely the time base. A 10 MHz crystal oscillator is used as the internal reference and is a part of the Gate Generator Assembly A107. For increased accuracy and stability, ovenized oscillator options are available, or the user may select an external 10 MHz reference.

A frequency measurement is made by generating a time interval (Gate Time) consisting of a number of cycles of the reference. This Gate Time is then used as an interval during which the input signal is counted by the Count Chain Assembly A106.

Initially, the microprocessor selects one of several available inputs to the Count Chain Assembly and the appropriate Gate Time based on user input information; band selection, resolution, etc. The microprocessor then initiates the measurement cycle by resetting the Count Chain to zero and allowing a gate to be generated. During the gate interval, the Count Chain accumulates the number of cycles of the input signal. At the end of the gate time, the microprocessor reads the stored information in the Count Chain and performs any required calculations necessary to convert the measurement into a direct reading of the unknown frequency. The front panel display is then updated with the new measurement results. Figure 4–1 shows a simplified block diagram of the counter.

BAND 2 CONVERTER

An input signal is applied to the mixer along with an appropriate local oscillator (L.O.) to generate an IF frequency in the range of 10 MHz to 190 MHz. This signal is filtered and amplified to a level suitable for direct measurement by the Count Chain.

The L.O. frequency is generated by the Voltage Controlled Oscillator (VCO) of the Band 3 Converter. This frequency is phase locked to the counter's time base and controlled by the microprocessor. A VCO multiplier serves to either pass along the signal directly or double it. It can also turn off the signal and pass only a DC bias to the mixer.

Two detectors provide outputs proportional to the amplitudes of both the applied RF signal and the resulting IF signal. These outputs are compared in the Signal Comparator, which provides a digital output when the IF amplitude exceeds the RF amplitude.

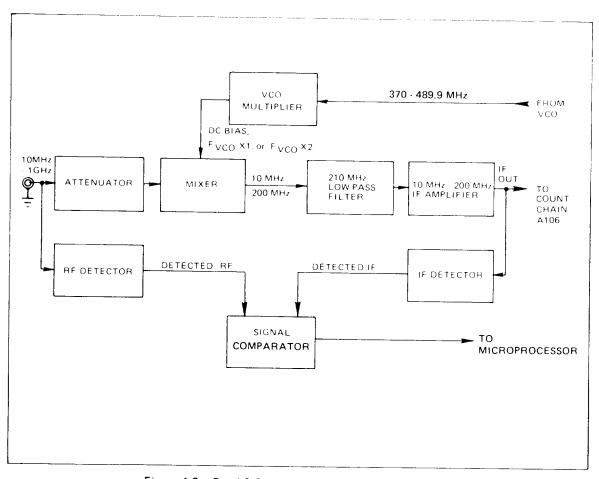


Figure 4-2 Band 2 Converter Block Diagram, Simplified

The output frequency of the system is the difference between the input signal and the L.O. applied to the mixer. Since the L.O. frequency is a harmonic (N) of the VCO frequency, the unknown input frequency can be expressed as $F_{IN}=N$ F_{VCO} \pm F_{IF} . There are three primary functions of the software operating the converter:

- To select the appropriate harmonic number N.
- To select an appropriate VCO frequency.
- To determine whether the IF frequency is added to, or subtracted from the L.O. frequency.

These functions are accomplished by selecting N and FVCO and looking for an IF signal of the appropriate amplitude and frequency. Overall system gain is such that whenever the correct L.O. frequency is applied, the IF power will exceed the RF power. This is the primary information used in determining the correct VCO frequency and harmonic number. Once an IF is obtained, the harmonic number is verified and the +/- sign in the equation is determined by shifting the VCO frequency and observing the magnitude and direction of the resulting IF shift. Converter operation is diagrammed in figure 4-3.

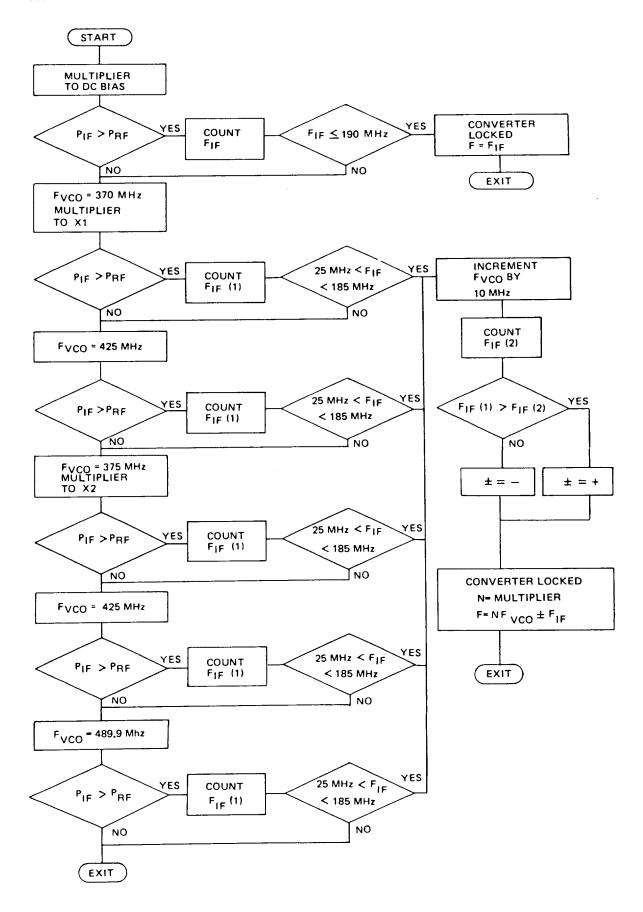


Figure 4-3. Band 2 Converter Operation

The L.O. frequencies being used, except the range of direct counting (< 190 MHz), have been selected so only IF frequencies from 25 MHz to 185 MHz are required. Since the counter can count signals less than 10 MHz, the restricted operating range provides margin for frequency modulation on the input signal, and for incrementing the VCO frequency.

Figure 4-4 shows the operating ranges for the various harmonics and VCO frequencies used.

Input Frequency Range FIN(MHz)	VCO Frequency FVCO(MHz)	Harmonic Number N	IF Frequency Range FIF(MHz)
10 - 190		0	10 - 190
185 - 345	370	1	185 - 25
345 - 400	425	1	80 - 25
400 - 560	375	1	25 185
560 - 610	425	1	135 - 185
610 - 725	375	2	140 - 25
725 - 825	425	2	125 - 25
825 - 93 5	375	2	75 - 185
935 - 1 03 5	425	2	85 - 185
1035 - 1164.8	489.9	2	55.2 - 185

Figure 4-4. Band 2 Operating Ranges

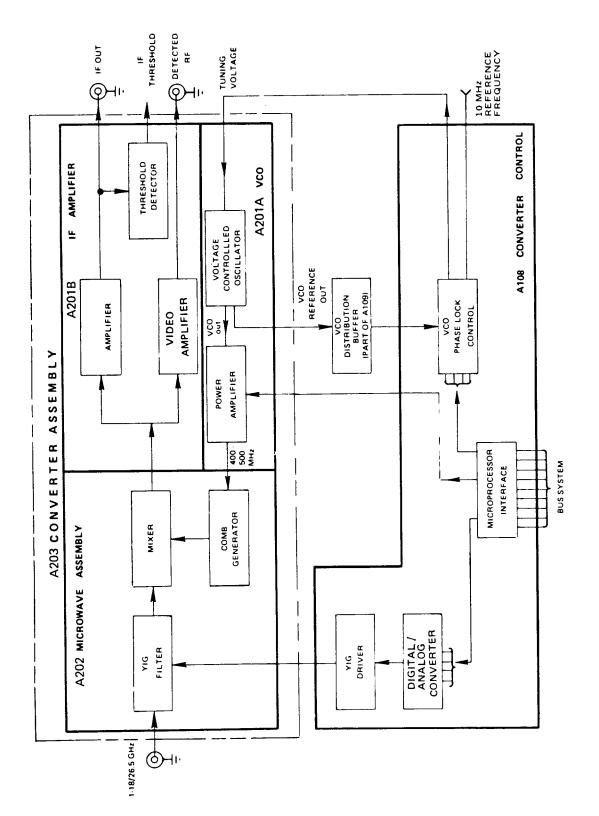


Figure 4-5 Band 3 Converter, Simplified.

BAND 3 CONVERTER

Measurement of a signal in Band 3 is accomplished by down converting from the microwave range to approximately 127 MHz. This is accomplished by mixing the input signal with a known reference frequency which is a harmonic of the VCO. The VCO frequency (400-500 MHz) can be selected in 50 kHz increments by using a microprocessor controlled phase lock system while retaining the accuracy and stability of the counter's time base reference.

A simplified diagram of the Band 3 converter is shown in figure 4-5. There are two major assemblies. The Converter Control assembly (A108) and the Converter Assembly (A203).

CONVERTER CONTROL A108

The Converter Control assembly contains the interface between the microprocessor bus system and the Converter (A203). A digital-to-analog converter and a precision current driver provide a 2 MHz frequency resolution for setting the YIG filter of A202.

A108 also contains the programmable VCO phase lock control system. This system lets the microprocessor interface select any VCO frequency between 400 and 500 MHz, in increments of 50 kHz.

CONVERTER A 203

The Converter assembly consists of three subassemblies.

- A201A, Voltage Controlled Oscillator (VCO) Assembly
- A201B, IF Amplifier Assembly
- A202, Microwave Assembly (yig)

The A202 Microwave Assembly contains the YIG filter, mixer and comb generator.

The input signal (1 GHz - 20 GHz/26.5 GHz) passes through a YIG filter on A202. The filter is an electronically tunable bandpass filter, with an operating frequency proportional to its tuning current. This filter determines the approximate frequency of the input signal, and filters out any undesired signals, making it possible to count a signal at one frequency even if a larger signal is present at another frequency.

When tuning the YIG filter to the input signal, the mixer is used as an RF detector, and its output is amplified in the video amplifier on the IF assembly.

The output of the Video amplifier is maximum when the YIG filter is tuned to the input signal. In the case of multiple input signals, the video amplifier output determines which signal is largest.

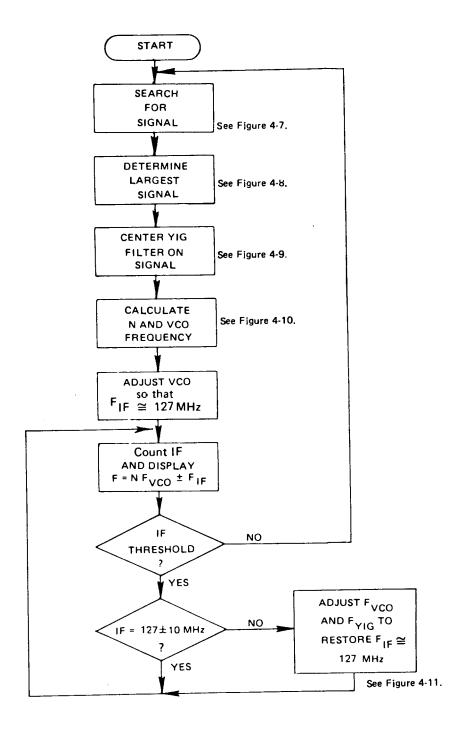


Figure 4-6. Band 3 Operation, Simplified.

On units equipped with the Power Measurement Option (02), accurate frequency correction factors are stored in the counter's memory. This allows absolute power calibration of the video amplifier output.

Once the YIG filter is tuned to the input signal, the appropriate harmonic number (N) and VCO frequency (F_{VCO}) are selected to produce an IF frequency (F_{IF}) at approximately 127 MHz. The input signal is found by using:

The IF frequency produced in the mixer is amplified by the high gain IF amplifier and sent to the count chain (A106). The IF threshold detector (A201B) insures sufficient IF amplitude for count accuracy.

OPERATION

First the YIG filter is stepped in 64 MHz steps from its low to high limits. During this search the RF detected output is fed, through a microprocessor controlled step attenuator to a threshold detector. After each step the threshold detector is checked. If triggered, the search mode is halted until the amplitude of the signal is determined. This is done by stepping the filter back and forth through the signal and stepping the attenuator until the signal is attenuated below the threshold. The counter then returns to the search mode to look for any larger signals. After searching the entire frequency range, it returns to the largest signal and begins to center the YIG filter precisely on the input frequency. See Figure 4-6 for a simplified diagram of Band 3 operation. For more detailed descriptions of Band 3 operation see Figures 4-7 through Figure 4-11.

The centering process consists of slowly stepping the YIG filter down in 2 MHz increments until a level of 3-6 dB below the peak is reached. This frequency is stored and the process is repeated from the other side by stepping the filter up in 2 MHz steps. The average of the two frequencies obtained is the center of the passband. This is the frequency which is used to determine the N and F_{VCO}.

After centering, N is determined from N = $\frac{FYIG - 127}{500}$ and then rounded up to the next higher integer. From this, FVCO is calculated using FVCO = $\frac{FYIG - 127}{V}$. Should this yield FVCO < 400 MHz, then FVCO is recalculated using FVCO = $\frac{FYIG + 127}{N}$.

Since FYIG is only approximately equal to FIN, the IF frequenc II not be exactly 127 MHz. Therefore, the next step in the operation is a VCO frequency adjustment to shift FIF into the middle of the IF passband.

VCO frequency correction is achieved by counting F_{IF} and changing F_{VCO} by $\pm \frac{F_{IF} - 127}{N}$. If the error is large enough to be outside the IF passband (IF threshold is not triggered) then a series of steps (shifting the IF in \pm 20 MHz increments) are taken until the signal falls within the passband.

Once the VCO corrections have been made, the converter has acquired the signal and the counter is ready to count and display the input frequency.

After each measurement, the frequency of the IF is examined. If the input frequency has shifted more than 10 MHz, new frequencies for the YIG and VCO are calculated to restore the IF to 127 MHz. This method provides rapid tracking of a signal being tuned.

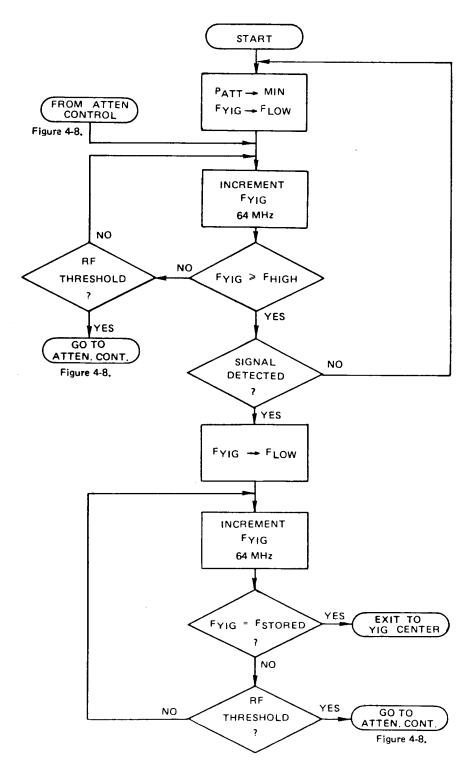


Figure 4-7. Band 3 Search For Signal

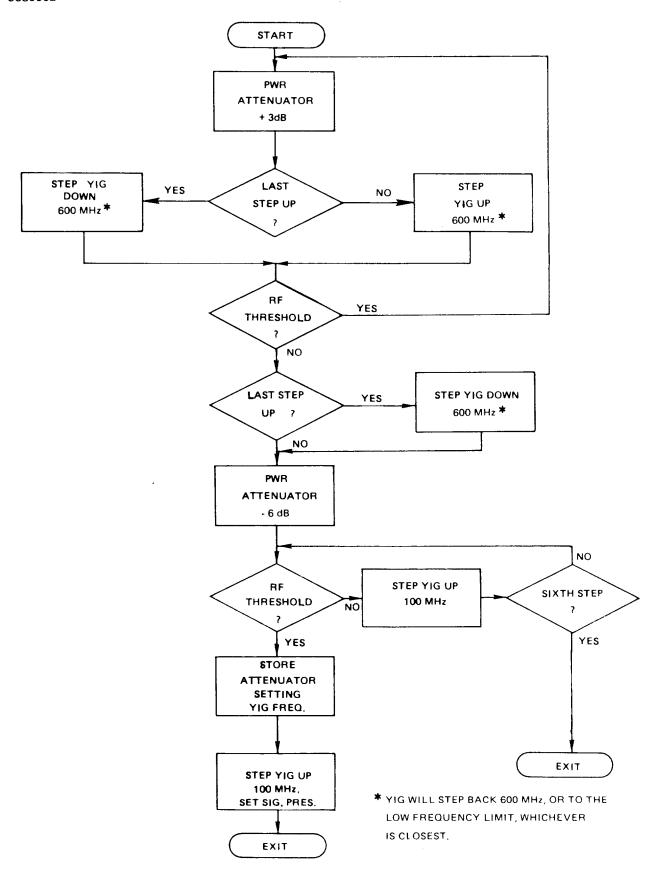


Figure 4-8. Determine Largest Signal

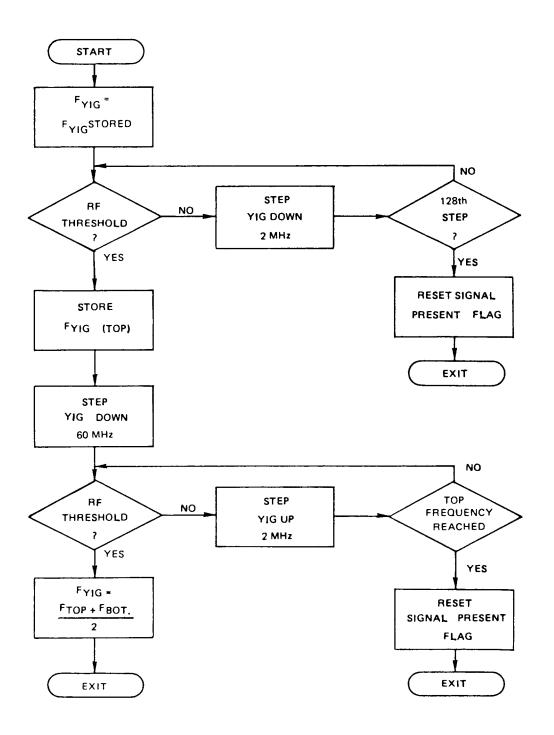


Figure 4-9. YIG Centering

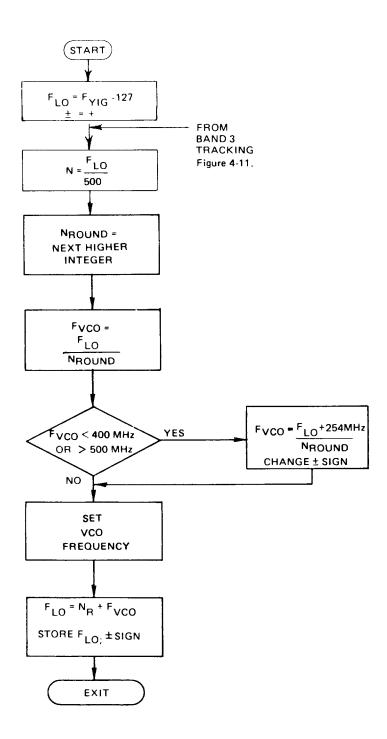


Figure 4-10. Calculate N and VCO Frequency

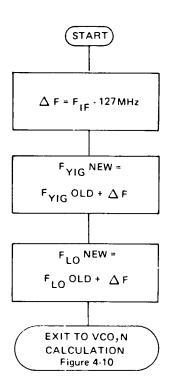


Figure 4-11. Band 3 Signal Tracking

SOURCE LOCK

The counter source locks in two main steps: coarse tune and phase lock. Coarse tune sets the input frequency within 5 MHz of the desired phase lock frequency. Phase lock then locks the input to the time base oscillator. A block diagram of the source lock system is shown in figure 4-12.

REFERENCE LOOP

The reference loop provides the reference frequency to the phase lock board. The reference loop output is phase locked to the counter's time base. The microprocessor sets the reference loop between 10 and 50 MHz with a 2.5 kHz resolution.

COARSE TUNE

The 14 bit coarse tune DAC is driven directly by the microprocessor and provides an output voltage variable from 0 to $10.2\ V$.

PHASE LOCK

The phase detector compares the I.F. frequency to the reference frequency and provides an output voltage relative to the phase difference of the two inputs. To keep the I.F. to the phase detector between 10 and 50 MHz a ÷ 4 is switched in at frequencies greater than 50 MHz. The phase detector output drives a programmable attenuator, used to compensate for different source gain constants. The integrator sets one of three bandwidths, selected by the microprocessor.

The output driver was designed to be a resistive voltage source, capable of driving \pm 10 V into a high impedance or \pm 75 MA into a low impedance.

SHALLOW SEARCH

The Source Lock process requires the microprocessor to directly vary the output voltage. To accomplish this the phase lock loop is disconnected and the integrator is connected to the 8 bit shallow search DAC.

SOFTWARE

The Source Lock software contains two main routines called by the Source Lock Driver. They are Coarse Tune and Phase Lock. In addition the Source Lock Driver controls recall of stored data and loss of source lock routines (See figure 4-13).

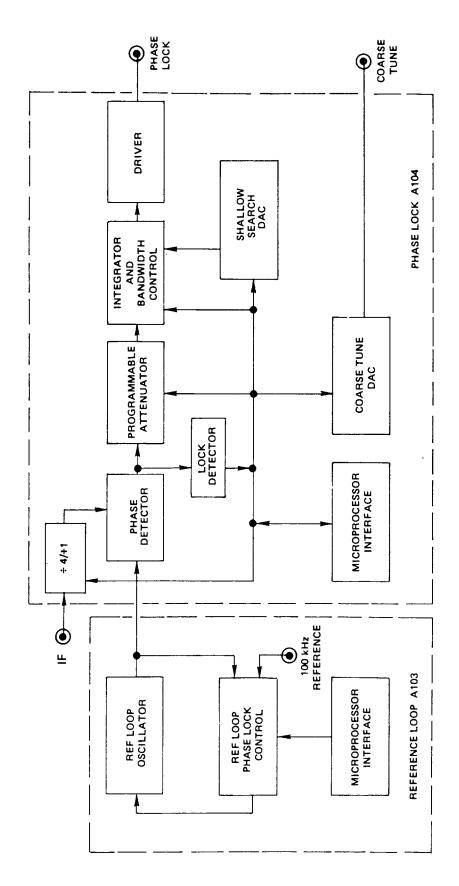


Figure 4-12, Source Lock Block Diagram

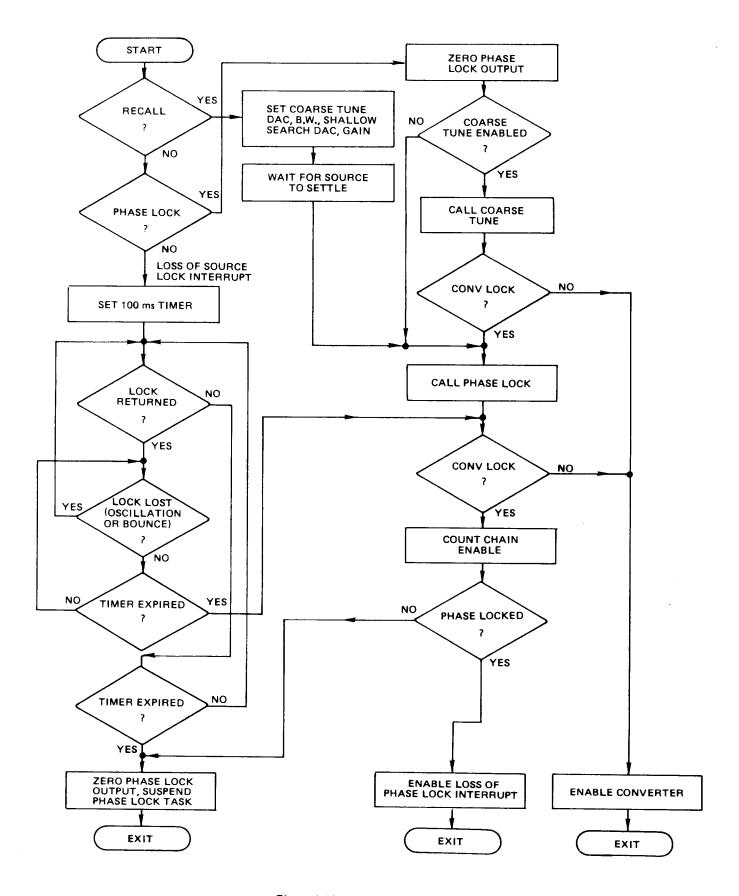


Figure 4-13. Source Lock Driver

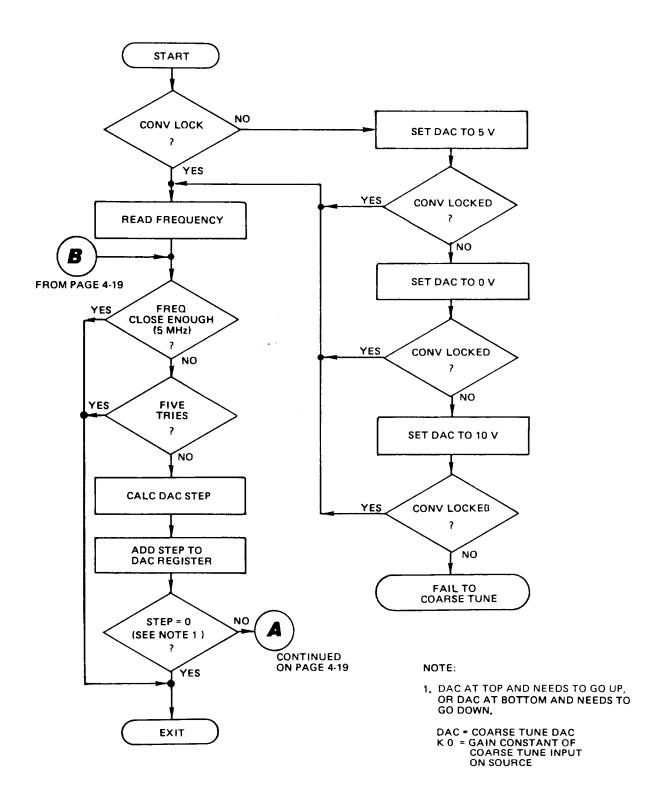


Figure 4-14. Coarse Tune Flow Diagram

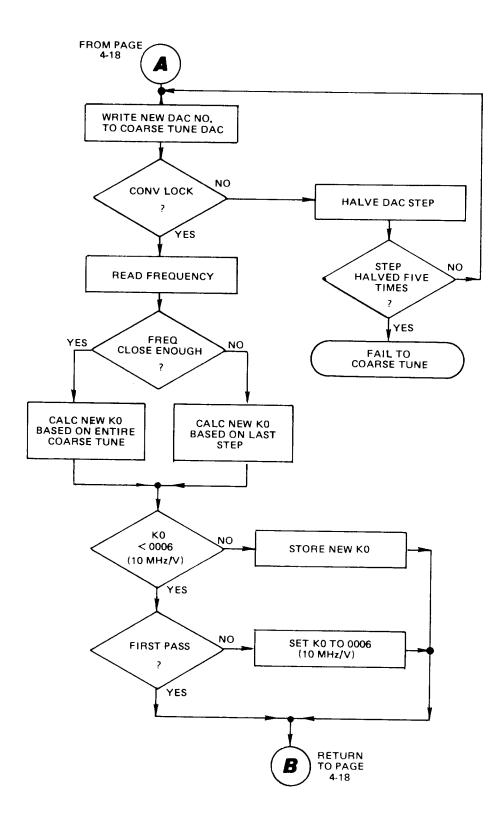


Figure 4-14. Coarse Tune Flow Diagram, continued

5580032

COARSE TUNE

Coarse Tune will set the frequency of the source within 5 MHz of the desired frequency.

When called, coarse tune first checks for converter lock (Aquisition of valid signal). If no converter lock exists, the coarse tune DAC is set to 5 V, 0 V, and 10 V respectively. If no converter lock can be achieved the lock sequence is aborted.

When converter lock is acquired the input frequency is read. If the input frequency is within 5 MHz of the desired frequency coarse tune returns to the Driver Program. If not, the step size is calculated using the following formula:

Where:

Fd = Desired Source Lock Frequency

Fb = Beginning Frequency

K0 = Source gain constant calculated by last coarse tune step.

If the coarse tune output is maximum and the step is calculated to be positive, or the coarse tune output is zero and the step is calculated to be negative, coarse tune is aborted. The lock sequence, however, is not aborted. If the step is valid, the output is stepped and the counter waits for the source to settle to the new frequency. If, after waiting, converter lock cannot be achieved (the source stepped out of range, or into a dead band) the DAC step is halved and the process repeated.

After the source has settled to a new, valid frequency the gain constant is calculated using the following formula:

$$\frac{\mathsf{Fn} - \mathsf{Fb}}{\mathsf{DAC}\,\mathsf{STEP}} = \mathsf{K0}$$

Where:

Fn = New Frequency

Fb = Beginning Frequency

KO = New Source gain constant to be used in next coarse tune step.

The gain constant is justified to be greater than 10 MHz/V and less than 25 GHz/V and the entire process is repeated.

Using this process the coarse tune routine can learn the gain constant of the source, requiring minimum amount of time to coarse tune linear sources, but still maintaining the capability to coarse tune non-linear sources.

PHASE LOCK

The Phase Lock portion of the source lock software performs the following tasks sequentially:

- 1. Checks if input signal is within 50 MHz of desired frequency. Tunes source with the shallow search DAC if input signal is not close enough.
- 2. Determines the dynamic gain constant and polarity of the source.
- 3. Sets the YIG and local oscillator of the counter to the desired frequency.
- 4. Sets the phase lock loop attenuator and reference loop.
- 5. Tunes the source with the shallow search DAC until an IF exists.
- 6. Sets the loop bandwidth and polarity of the phase lock loop.
- 7. Closes the phase lock loop. Checks for phase locked condition.

Detailed descriptions of each step in the phase lock process are as follows:

INPUT SIGNAL FREQUENCY CHECK

Under normal conditions, converter lock should exist when the phase lock program is activated. In cases where converter lock does not exist, the phase lock program will try to obtain a converter lock by enabling the converter lock program. If converter lock cannot be achieved, the phase lock process will be repeated indefinately until cancelled.

If the coarse tune input is connected and the counter is in the COARSE TUNE ACTIVE mode, the input frequency to the counter should be within 5 MHz of the desired phase lock frequency when this portion is entered. The phase lock software will not attempt to phase lock unless the input frequency can be tuned to within 50 MHz of the desired frequency. Under circumstances where this portion of the program is entered, with the input frequency more than 50 MHz from the phase lock frequency, the software will attempt to tune the source with the shallow search DAC.

The program initially assumes the source DC gain constant is 1024 MHz/V (maximum gain constant). With this assumption, the phase lock software calculates the number of DAC steps needed to tune the source to the desired frequency. When the source has settled, after stepping the DAC, the program checks if the frequency change is more than 1.5 MHz. If it is, a new DC KO and polarity will be calculated. The frequency of the source is checked again to see if it is within 50 MHz of the desired frequency. If this condition is true, the software will start the phase lock process. If not, the process of stepping the shallow search DAC is repeated utilizing the calculated DC KO and polarity.

After stepping the DAC, if the change in frequency is less than 1.5 MHz, the current K0 is divided by 32 and the stepping process is repeated. K0 will be defaulted to 2 MHz/V if the result of the division is less than 2 MHz/V.

If the source output frequency cannot be tuned to within 50 MHz of the phase lock frequency in five tries, the phase lock process will be repeated indefinately until cancelled

DYNAMIC KO AND POLARITY DETERMINATION

This is the first step of the actual phase lock process. If the source has been tuned, the state of the divide-by 16 will be retained throughout the phase lock process. That is, the dynamic K0 checked in this step is 1024 MHz/V to 32 MHz/V for the divide-by 16 on; and 64 MHz/V to 2 MHz/V for the divide-by 16 off. If the source has not been tuned, the full range of K0 will be checked (i.e. 1024 MHz/V to 2 MHz/V).

The software determines the dynamic KO of the source by firet assuring it equals the largest KO in the range to be checked. The shallow search DAC is stepped to produce a 5 MHz change in frequency under that assumption. The new frequency is read within 2.5 ms and the actual change in frequency is determined. If the actual change in frequency is less than 1.5 MHz, the current KO is divided by 4. The DAC is returned to where it was before it was stepped, and the DAC stepping process is repeated. This process is continued until the change in frequency is more than 1.5 MHz, and the actual dynamic KO is calculated, or all KO's in the range have been checked, and the phase lock process is restarted. During this step, converter lock must exist.

YIG AND LOCAL OSCILLATOR FREQUENCY DETERMINATION

In this step, the software goes through different calculations for different bands.

- For BAND 1, this step is skipped.
- For BAND 2, only the local oscillator frequency needs to be determined.
- For BAND 3 and BAND 4, both the YIG and the local oscillator frequencies are determined.

The YIG and local oscillator frequencies are determined from the desired phase lock frequency. The YIG and local oscillator are set according to the calculation.

SET PHASE LOCK LOOP ATTENUATOR AND REFERENCE LOOP

The loop attenuator is set according to the dynamic KO determined. With divide-by 16 on, a KO of 32 MHz/V corresponds to minimum attenuation; and with divide-by 16 off, 2 MHz/V corresponds to minimum attenuation. The reference loop is set to the same frequency as the IF. It is calculated by subtracting the local oscillator frequency (determined in the previous step) from the desired phase lock frequency.

TUNE SOURCE

The software will check for an IF threshold in this step. If IF exists, the program will proceed to the next step. If IF does not exist, the program will step the shallow search DAC to change the source frequency in 10 MHz steps. The size of the DAC step is determined by using the dynamic K0. The phase lock process will be restarted if IF does not exist within six tries.

SET BANDWIDTH AND POLARITY

The loop bandwidth is selected by the user through the keyboard or GPIB. If Bandwidth 0 is selected, the software will try to close the phase lock loop in the 10 kHz, 2 kHz and 500 Hz bandwidths sequentially. It will stop at the first bandwidth in which it can close the phase lock loop successfully.

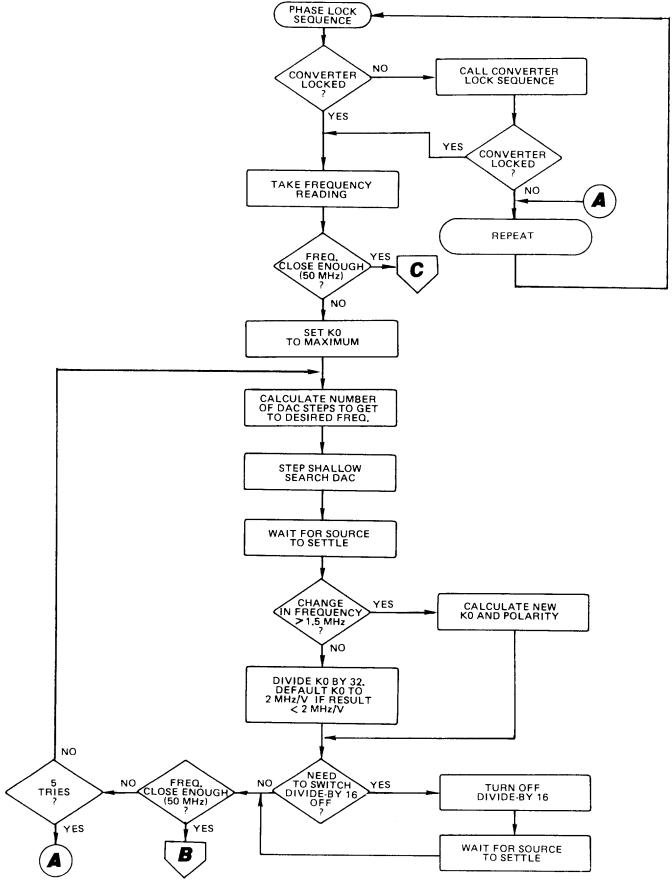


Figure 4-15. Phase Lock Flow Diagram.

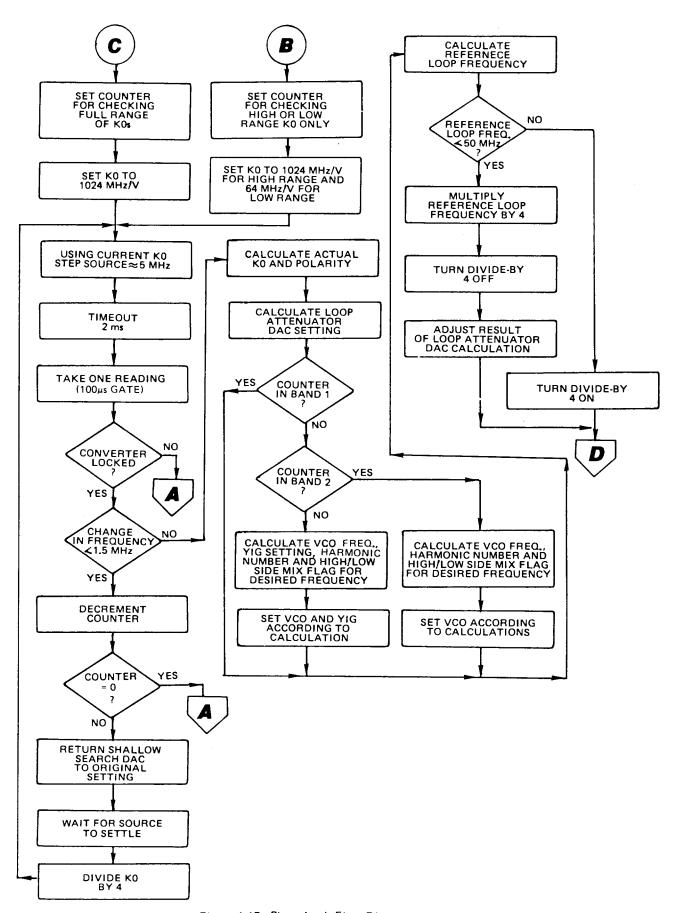


Figure 4-15. Phase Lock Flow Diagram, continued.

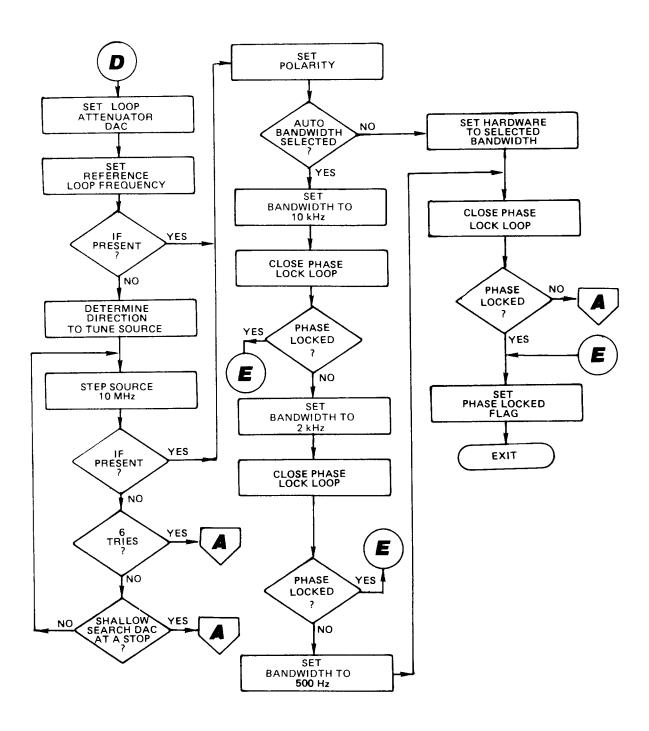


Figure 4-15. Phase Lock Flow Diagram, continued

CLOSE PHASE LOCK LOOP

After the polarity and bandwidth have been set, the program will close the phase lock loop by disconnecting the shallow search DAC and connecting the loop attenuator to the output driver. It will wait a maximum of 200 ms for the phase lock detector to indicate a phase lock condition if BW1 is selected. The software will wait a maximum of 50 ms if BW2 or BW3 is selected. If the wait period expires with phase lock condition not present, the phase lock process will be restarted.

STORING AND RECALLING DATA

When the store function is activated the counter will store the source lock frequency, the coarse tune DAC setting, the B.W. setting, the phase lock gain constant setting, and the shallow search DAC setting.

When recalling stored data the program restores all these settings, waits for the source frequency to settle, then closes the phase lock loop.

LOSS OF SOURCE LOCK INTERRUPT

If source lock is lost, the program is interrupted and the loss of lock routine is called. The loss of lock routine will check for 100 ms to see if source lock returns. If source lock is re-acquired and maintained the routine simply returns. If source lock is not re-acquired, or not maintained for 100 ms the phase lock output is set to zero volts and the source lock light will flash and the phase lock process will be restarted.

Section 5 Maintenance and Service

This section contains instructions and information to maintain your counter.

FUSE REPLACEMENT

The counter uses one fuse. It is located on the rear panel next to the voltage select switch.

- For 100/120VAC operation use a 1.0A slow-blow MDL type fuse.
- For 220/240VAC operation use a 0.50A slow-blow FST type fuse.

The voltage select switch should be set to the proper line voltage. To change line voltage:

- 1. Be sure the counter is disconnected from the power line.
- 2. With a flat edged screwdriver, rotate the voltage select switch until the arrow points to the desired line voltage.
- 3. Change to a fuse with the value specified for the line voltage selected.

NOTE:

Always be sure that the fuse is the type and value specified for, and that the voltage select switch is set to correspond to the AC power input voltage, or the counter may be damaged.

AIR CIRCULATION

Air circulates through the vents in the rear panel of the counter. These vents must not be obstructed or the temperature inside the counter may increase enough to reduce the counter stability and shorten the component life.

PERIODIC MAINTENANCE

No periodic preventive maintenance is required. To maintain accuracy, it is recommended that the counter be recalibrated every six months.

CAUTION

Do not attempt repair or disassembly of the Microwave Converter or Time Base Oscillator Assemblies. Contact EIP or your sales representative.

If the following assemblies are repaired or replaced, the counter may require recalibration for proper operation.

- Power Supply (A101)
- Gate Generator (A107)
- Converter Control (A108)
- Microwave Converter (A203)

Care should be taken when removing any assemblies to prevent damage to components or cables.

FACTORY SERVICE

If the counter is being returned to EIP for service or repair, be sure to include the following information with the shipment.

- 1. Name and address of owner.
- 2. Model and complete serial number of counter.
- 3. A COMPLETE description of the problem (Under what conditions did the problem occur? What was the signal level? What equipment was attached or connected to the counter? Did that equipment experience failure symptoms?).
- 4. Name and telephone number of someone familiar with the problem who may be contacted by EIP for further information, if necessary.
- 5. Shipping address to which the counter is to be returned. Include any special shipping instructions.
- 6. Pack the counter for shipping (Refer to Section 2).

FIELD SERVICE

EIP has an assembly exchange program. All plug-in assemblies, modules, and the front panel assembly may be exchanged.

After you have identified a faulty assembly, call EIP with the assembly number and shipping information. A replacement can be shipped within 24 hours. After receiving the replacement assembly, return the faulty assembly to EIP for credit.

Section 6 Troubleshooting

This section defines troubleshooting aids that are incorporated in the 575B/578B counter. They are:

- Signature analysis
- Self diagnostics
- Keyboard controlled circuit tests

The procedures and tables are provided for troubleshooting to a functional circuit level.

SIGNATURE ANALYSIS

Signature analysis is a technique used to troubleshoot complex logic circuitry. It uses data compression to reduce any data pattern to a 4 character alpha-numeric word.

The start and stop inputs define the measurement window. Each time a transition within the measurement window occurs on the clock input, the probe is sampled, and the logic level is shifted into the analyzer. This information is used to generate a signature unique to that data string. That signature can then be compared to a reference signature, taken from a known good product, to determine if the data string is correct. The counter implements signature analysis in either a free running or program controller manner.

FREE RUNNING

This mode of signature analysis is essential for troubleshooting problems that could prevent the program from running. A CLRB instruction can be forced by breaking the data bus at A105 JMP1 and grounding A105 TP5, effectively "free running" the microprocessor. "Free running" means forcing a simple instruction (such as NOP or CLRB) on the data bus, which the microprocessor sees at every address location. This causes the microprocessor to continually cycle through its entire address range, accessing everything on the address bus as it does. By strategically placing the start and stop connections the entire bus system can be probed for bad signatures.

	START	STOP	CLOCK
CONNECTIONS	A105 TP4	A105 TP4	A105 TP3
BUTTONS	IN	IN	IN

LINE	SIGNATURE	LINE	SIGNATURE
A0 (P1 Pin 54)	υυυυ		
A1 (P1 Pin 53)	FFFF		
A2 (P1 Pin 52)	8484		
A3 (P1 Pin 51)	P763		
A4 (P1 Pin 50)	1U5P		
A5 (P1 Pin 49)	0356		
A6 (P1 Pin 48)	U759		
A7 (P1 Pin 47)	6F9A		
A8 (P1 Pin 46)	7791		
A9 (P1 Pin 45)	6321		
A10 (P1 Pin 44)	37C5		
A11 (P1 Pin 43)	6U28		
A12 (P1 Pin 42)	4FCA		
A13 (P1 Pin 41)	4868		
A14 (P1 Pin 40)	9UP1		
A15 (P1 Pin 39)	00001		
U3 (P1 Pin 7)	76AC		
U5 (P1 Pin 8)	0000		
TP6	854F		
TP7	PACH		
TP8	755F		
TP9	755H		
U8 (P1 Pin 19)	U3P7		
U9 (P1 Pin 18)	0003		
U10 (P1 Pin 18) U17 (P1 Pin 1)	0003 9F14		
U17 (P1 Pin 2)	9F14 9F17		
017 (111112)	3117		

^{+ 5}V 0003, phase 2 0003 *

Figure 6-1. Microprocessor Free Running Signatures

^{*} Due to the synchronous qualities of the signature analyzer, phase 2 will read the same as + 5V but the logic probe will be flashing. Likewise, anything gated with phase 2 may have the same signature as the ungated signal.

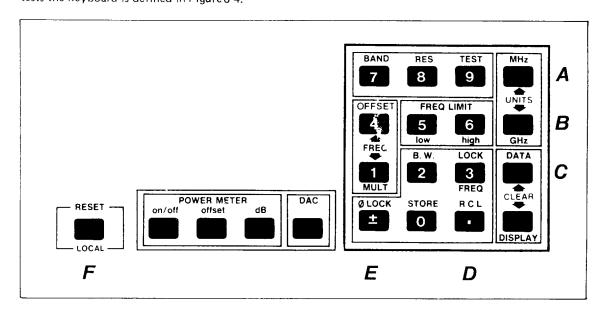
PROGRAM CONTROLLED

If the counter is working sufficiently to access the test functions, program controlled signature analysis can be used. In program controlled signature analysis the start and stop (and therefore the signature) are controlled by software. This allows the signature analyzer to be used, in many cases, to troubleshoot the hardware outside the bus system.

SELF DIAGNOSTICS

At turn-on, the counter performs several internal diagnostic checks, checking the RAM, PROM, and the associated decoding circuitry. The display shows dashes during these checks. If the counter passes the test it then enters the normal operating mode. If it fails RAM check the display will show all Es. If the counter fails any of the PROM checks an error message will be displayed. Please refer to Figure 6-3.

The counter generates PROM error signatures only during the power up diagnostics—check. It is necessary to turn the power off, and then on again, while the signature analyzer is connected, to get a signature.


	START	STOP	CLOCK	PROBE
CONNECTION	A106 TP5	A106 TP5	A105 TP8	A105 TP6 (+5V)
BUTTONS	OUT ↑	IN ↓	IN ↓	

PROBLEM	ERROR
RAM Bad	All E's
A105 U11 (Basic Program) Bad A105 U12 (Basic Program) Bad A105 U13 (Basic Program) Bad	31 32 33

Figure 6-2. Self Diagnostic Error Indications

KEYBOARD CONTROLLED CIRCUIT TESTS

There are 11 keyboard controlled circuit tests (01 thru 11). All tests are accessed by pressing and then the two digit test number. Tests which do not require keyboard inputs to function (tests 01, 02, 03, 04, 06, 07) can be exited by pressing any key. The counter will exit the test and enter the function selected. Tests which use the keyboard in their operation (tests 05,08,09,10,11) can be exited by pressing any key not used by the test. All tests can be exited by pressing any key not used by the test. All tests can be exited by pressing any key not used by the test. All tests can be exited by pressing any key not used by the test. All tests can be exited by pressing any key not used by the test. All tests can be exited by pressing and then the two digit tests are accessed by pressing and then the two digit tests of the tests of function (tests 01, 02, 03, 04, 06, 07) can be exited by pressing any key. The counter will return to DISPLAY normal operation. Some tests require hexadecimal coded keyboard inputs (tests 08, 09, 10, 11). For those tests the keyboard is defined in Figure 6-4.

KEY	HEX EQUIV.	KEY	HEX EQUIV.
0	0	9	9
1	1	MHz	Α
2	2	GHz	В
3	3	CLR DATA	С
4	4		
5	5	•	D
6	6	+/_	E
7	7	RESET	F
8	8	CLR DISPLAY	EXITS TEST
_			

Figure 6-3. Keyboard Configuration For Tests Requiring Hexidecimal Inputs.

	START	STOP	CLOCK	PROBE
CONNECTION	A106 TP5	A106 TP5	A105 TP8	A105 TP6 (+5 V)
BUTTONS	оит †	IN ‡	IN ‡	

BUTTON	COORDINATES	SIGNATURE
Reset	47	U68C
Power Meter ON/OFF	46	U7HA
Power Meter Offset	36	20P6
dB	16	U2F9
DAC	26	811P
7	41	A19C
8	42	66PU
9	43	CCH7
MHz	44	U5PU
4	31	PUPH
5	32	UC70
6	33	HF3A
GHz	34	OPA2
1	21	APH1
2	22	C45H
3	23	1766
CLR DATA	24	H9C8
+/_	11	375∪
0	12	H7PC
•	13	UAHH
CLR DISPLAY	EXIT TEST	C75U

Figure 6-4. Keyboard Test Coordinates and Signatures.

TESTS

- 01 200 MHz Self Test. This test sets the VCO to 400 MHz, divides it by two, and counts the 200 MHz output from the divider. It checks the count chain, VCO and VCO phase lock circuitry, and the gate generator.
- **8's Test.** This will light all LEDs, annunciators, and decimal points. It checks that everything on the display is lit, the intensity of the display, and the alignment of the LEDs and annunciators.
- Display Segment Test. This lights one segment of each digit, and one annunciator at a time, cycling through all segments. The cycle rate can be adjusted with the sample rate pot. It verifies that each segment of the display, segment drivers and display multiplexer operate properly and independently.
- Display Digit Test. This lights one entire digit, and its decimal point, at a time. It cycles through all digits and annunciators. The cycle rate is determined by the sample rate pot. It checks each digit and digit driver independently, and verifies operation of the display multiplexer.
- Keyboard Test. This will display the coordinates of each key as it is pressed. It also generates a unique signature for each key, so that keyboard can be checked without the display. Test 05 may be entered by keyboard or by momentarily tying A108 TP1 to A108 TP5. This makes it possible to enter the keyboard test for troubleshooting even if the keyboard is not operating well enough to enter the test in a normal manner. Test 05 checks the keyboard, keyboard interrupt, and keyboard decode circuitry. The coordinates and signatures for each key are shown in Figure 6-5.
- Of Converter Ramp Test. Test 06 continuously ramps the Band 3 Converter DAC from 0 to 27 GHz, in 2 MHz (LSB) steps. It also generates a signature for each of the inputs to the DAC. (See Figure 6-6). It can be used to test the YIG DAC, YIG drivers, YIG, and Band 3 RF level circuits.

	START	STOP	CLOCK
CONNECTIONS	A106 TP5	A106 TP5	A105 TP8
BUTTONS	OUT 1	IN ↓	iN ↓

NODE	SIGNATURE	NODE	SIGNATURE
A108 U4 Pin 2	9U78	A108 U4 Pin 9	7763
A108 U4 Pin 3	9946	A108 U4 Pin 10	HP8A
A108 U4 Pin 4	8F62	A108 U4 Pin 11	P45A
A108 U4 Pin 5	89U9	A108 U4 Pin 12	80A8
A108 U4 Pin 6	833F	A108 U4 Pin 13	77U6
A108 U4 Pin 7	U9CC	A108 U4 Pin 14	7245
A108U4 Pin 8	FCA6	A108 U4 Pin 15	28U9
+ 5V	49P4		

Figure 6-5. Converter Ramp Test Signatures

- **07** VCO Test This test cycles the VCO frequency from 400 to 500 MHz, in increments of 50 kHz. The cycle rate can be adjusted by the sample rate pot. 07 tests the VCO and the phase lock circuitry.
- **Power Meter Offset Test** This makes it possible to set the power meter zero DAC to any setting. The setting is entered as a four digit hexadecimal number (figure 6-4). The first two digits are used to program the coarse offset DAC, and the last two digits program the fine offset DAC. Test 08 enables the power meter zero DAC to be tested, and can provide a DC level signal to aid in testing the power meter circuit.
- **O9** Power Meter Gain Test This makes it possible to set the power meter sensing circuit to any number. The number is entered as a five digit hexadecimal number (figure 6-4) in the following format.

1st digit	A107 U10 bits 4-7
2nd digit	A107 U10 bits 0-3
3rd digit	A107 U12 bits 4-7 (Power Meter Option only)
4th digit	A107 U12 bits 0-3 (Power Meter Option only)
5th digit bit 0	Sets Amp marked "15 dB Gain" to high gain
5th digit bit 1	Sets Amp marked "30 dB Gain" to high gain

Digit 5 is a 2 bit number, so any number entered for digit 5 will be justified to a number from 0-3. Test 09 checks the RF level and power meter circuits.

10 Information Read/Alter Routine Test 10 can read any microprocessor address and, if that address is RAM or I/O, change its contents. The desired address is entered as a 4 digit hexadecimal number (see figure 6-4). When the 4th digit is entered the counter will display the contents of the desired address. The contents are then changed by entering a two digit hexadecimal number.

NOTE

Test 10 can change any temporary storage in the counter, including locations that are essential to the operation of the counter. Changing the wrong location will not damage the counter permanently, but it can cause improper operation. To return the counter to proper operation turn the counter off then back on.

SIGNIFICANT ADDRESSES, I/O PORTS

If an I/O bit is configured as an output, the number read by test 10 will be the same number that is programmed. If an I/O bit is configured as an input, the number read by test 10 will be the input signal level on the I/O line. Therefore, if an I/O port is programmed, and then read, the number displayed may not correspond to the number programmed because some bits of the I/O port may be configured as inputs.

ADDRESS OF PA PORTS	ADDRESS OF PB PORTS
2820	2822
	2402
	2602
1900	1902
1840	1842
1820	1822
1880	1882
1808	180A
ADD	DE66
ADD	n L 33
10	C04
	2820 2A00 2C00 1900 1840 1820 1880 1808

Figure 6-6. I/O Addresses.

Two important I/O port locations are the yig frequency control (address 1840, 1842) and the VCO frequency control (address 1820, 1822).

To convert from the desired yig frequency to the PIA program number:

- 1. Round the desired frequency to a multiple of 2 MHz (The yig DAC resolution is 2 MHz).
- 2. Divide the desired frequency in MHz by 2 (F/2).
- 3. Convert F/2 from decimal to hexadecimal.
- 4. The two most significant digits are programmed to address 1842, and the two least significant digits are programmed to address 1840.

To convert from the desired VCO frequency to the PIA program number:

	EXAMPLE (420, 75 MHz)
1.	Round the desired frequency to a multiple of 50 kHz (The resolution of the VCO frequency is 50 kHz).
2.	Multiply the desired frequency (in MHz) by 5
3.	If the result contains no fractional part, go to step 8.
4.	Multiply only the fractional part by 16
5.	Add the result to the most significant digit from step 2 MSD of 2103.75 = 2 - 2 + 12 = 14
6.	Convert the result to hexadecimal
7.	Replace the MSD from step 2 with the result from step 6 and drop the fractional part
8.	The two most significant digits are programmed to address 1822, and the two least significant digits are programmed to address 1820.

SIGNIFICANT ADDRESSES, RAM

All storage is RAM are in the following formats.

REGISTER FORM	AT, FREQUEN	CY STORAGE	REGISTER FORM	AT, POWER STO	DRAGE
ADDRESS	SIGN (00 =	+ , FF = _}	ADDRESS	SIGN (00 =	+, FF = _)
ADDRESS + 1	100 GHz	10 GHz	ADDRESS + 1	NOT	USED
ADDRESS + 2	1 GHz	100 MHz	ADDRESS + 2	NOT	USED
ADDRESS + 3	10 MHz	1 MHz	ADDRESS + 3	NOT	USED
ADDRESS + 4	100 KHz	10 KHz	ADDRESS + 4	NOT	USED
ADDRESS + 5	1 KHz	100 Hz	ADDRESS + 5	100 dB	10 dB
ADDRESS + 6	10 Hz	1 Hz	ADDRESS + 6	1 dB	, 1 dB

REGISTER	ADDRESS	
L.O. frequency	0257	
I.F. frequency	02C0	
Frequency output to display	0267	
Frequency limit low	02DC	
Frequency limit high	02 D5	
Frequency offset	02C7	
Source lock frequency	0102	
Source lock hardware condition (MISC1)	010D	

Figure 6-7. Frequency Storage Registers

REGISTER	ADDRESS	
Power output to display Power offset	026E 02CE	

Figure 6-8. Power Storage Registers

REGISTER	ADDRESS
Coarse Tune Gain Constant (2 bytes)	0002
Phase Lock Gain Constant (2 bytes)	0010
Phase Lock Polarity (1 byte)(0=+,FF= -)	010B

Figure 6-9. Other Significant Registers

To Translate Coarse Tune Gain Constant to MHz/V:

- 1. Convert coarse tune gain constant from hexadecimal to decimal.
- 2. Multiply gain constant by 1.606. $(K0_{16} \rightarrow K_{10} \times 1.606 = K0(MHz/V))$

To Translate Phase Lock Gain Constant to MHz/V:

The phase lock K0 stored in the counter is in DAC steps/kHz. To translate the phase lock K0 to MHz/V, determine if the divide-by 16 is on or off by checking the register MISC1. If the most significant bit is set, divide-by 16 is off. Use one of the following formulas as determined by the state of the divide-by 16.

For Divide-By 16 On:

Convert phase lock gain constant from hexadecimal to decimal. Divide 12782 by the result.

Formula: $12782/(K0_{16} - K0_{10}) = K0(MHz/V)$

For Divide-By 16 Off:

Convert phase lock gain constant from hexadecimal to decimal. Divide 798 by the result.

Formula: $798/(K0_{16} \rightarrow K0_{10}) = K0(MHz/V)$

TESTS, continued

- 11 Coarse Tune Test This allows the 14 bit coarse tune DAC to be set to any number. The number is entered as a hexadecimal number from 0 to 3FFF.
- 21 DAC Option 01 is described in Section 10.

TROUBLESHOOTING TREES

Troubleshooting trees are intended only as a guide, and do not describe every possible failure situation. Turn power off before removing or installing any P.C. boards or connectors. If the following assemblies are repaired or replaced, recalibration of the counter will be necessary.

- A101 Power Supply
- A107 Gate Generator
- A108 Converter Control
- A203 Converter Assembly

CAUTION

Do not attempt to repair or disassemble the A203 hybrid assembly.

TEST EQUIPMENT REQUIRED

MANUFACTURER	MODEL	DESCRIPTION	CRITICAL PARAMETERS
•			
Tektronix	475	Oscilloscope	100 MHz min. Bandwidth
Fluke	8050A	D.V.M.	41/2 digit resolution
H.P.	182C, 8559A	Spectrum Analyzer	125 MHz
H.P.	5004A	Signature Analyzer	
H.P.	651B	Signal Generator	10 Hz - 10 MHz
Wavetek	2002	Sweeper	10 MHz - 2 GHz
EIP	931	Microwave Sweeper	1-20 GHz
H.P.	8690A, 8696A	Microwave Sweeper	20 GHz - 26.5 GHz

Figure 6-10. Troubleshooting Test Equipment (Or Equivalent).

To use the troubleshooting trees:

- 1. Refer to the main troubleshooting tree.
- 2. Step through the main troubleshooting tree, performing all necessary checks, until the failure mode is noted.
- 3. Refer to the appropriate troubleshooting tree for the failure mode.

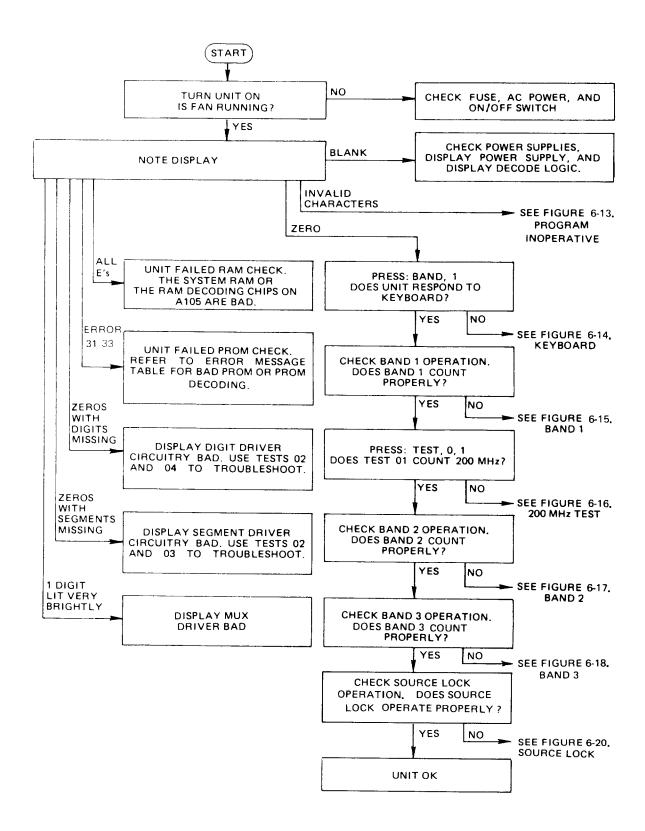


Figure 6-11. Main Troubleshooting Tree

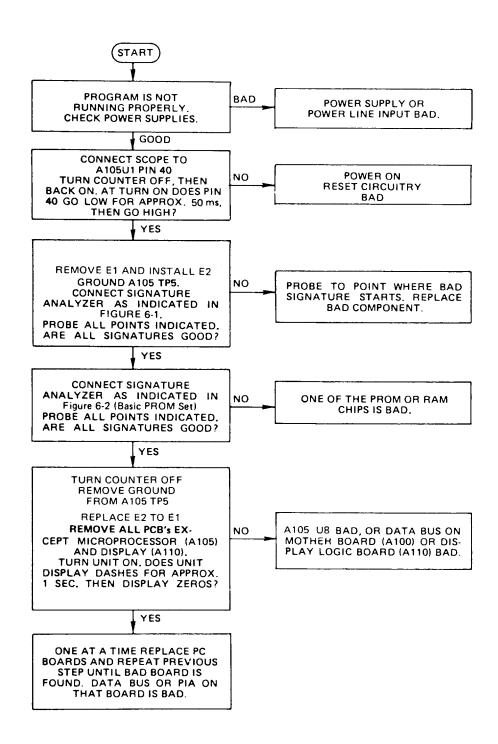


Figure 6-12. Program Inoperative

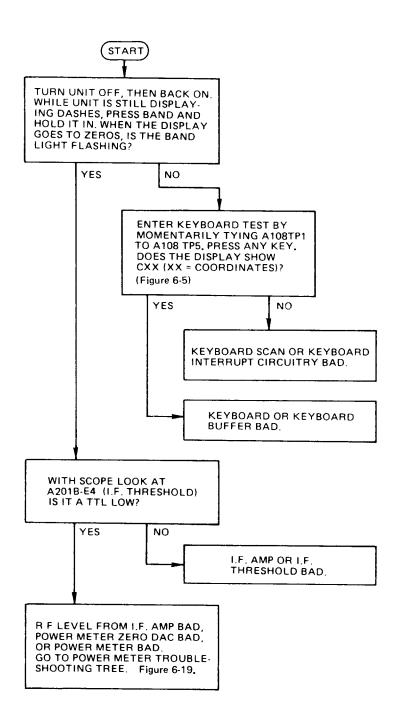


Figure 6-13. Keyboard

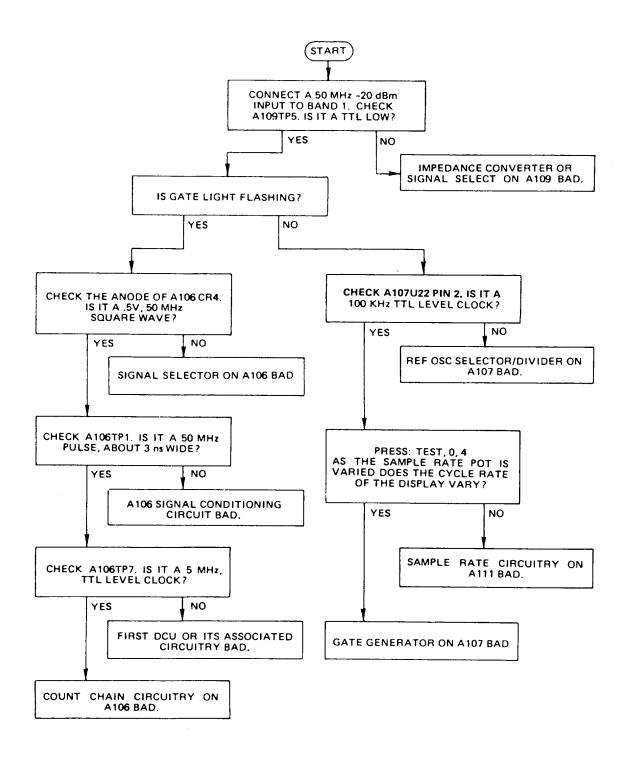


Figure 6-14, Band 1

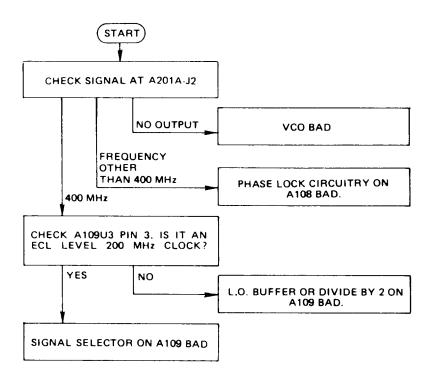


Figure 6-15. 200 MHz Test

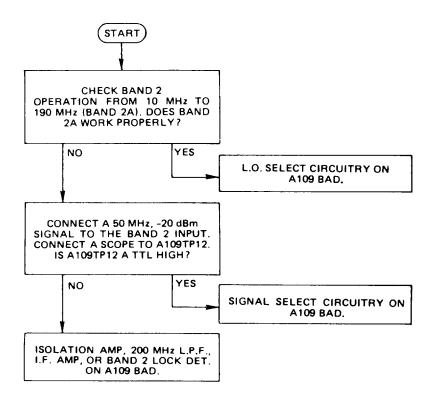


Figure 6-16. Band 2

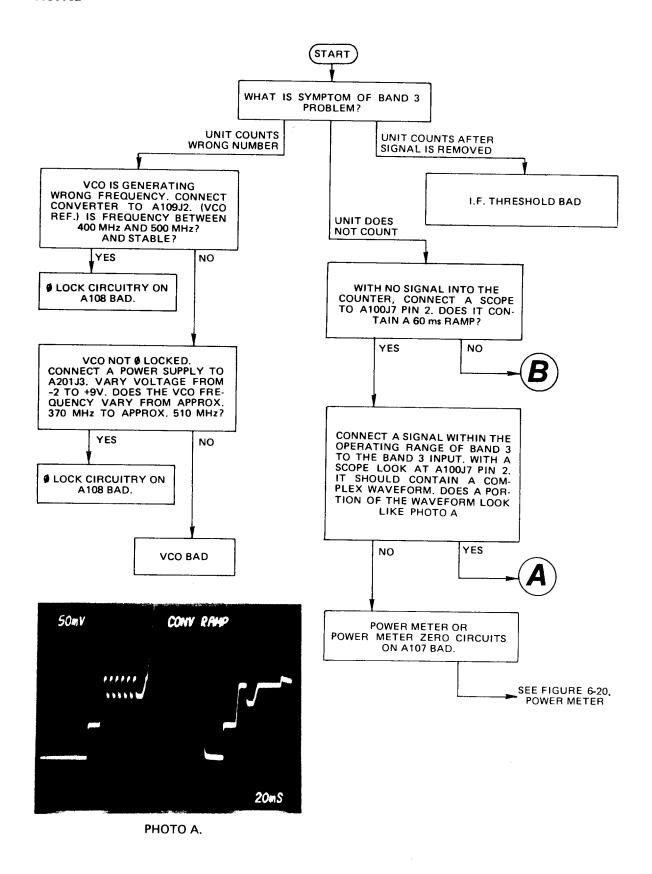


Figure 6-17, Band 3

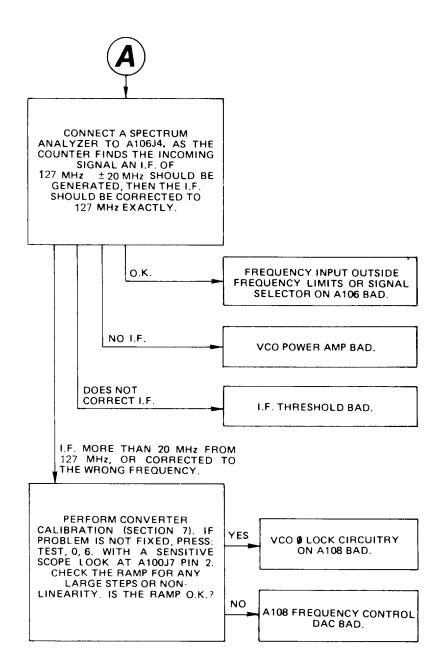


Figure 6-17. Band 3, continued

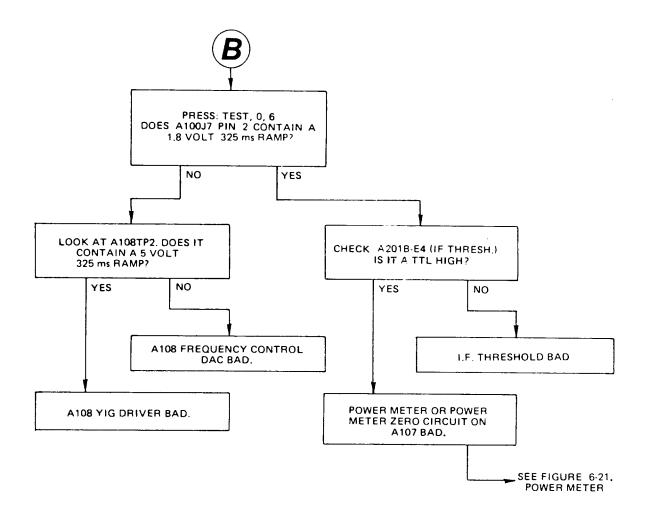


Figure 617. Band 3, continued

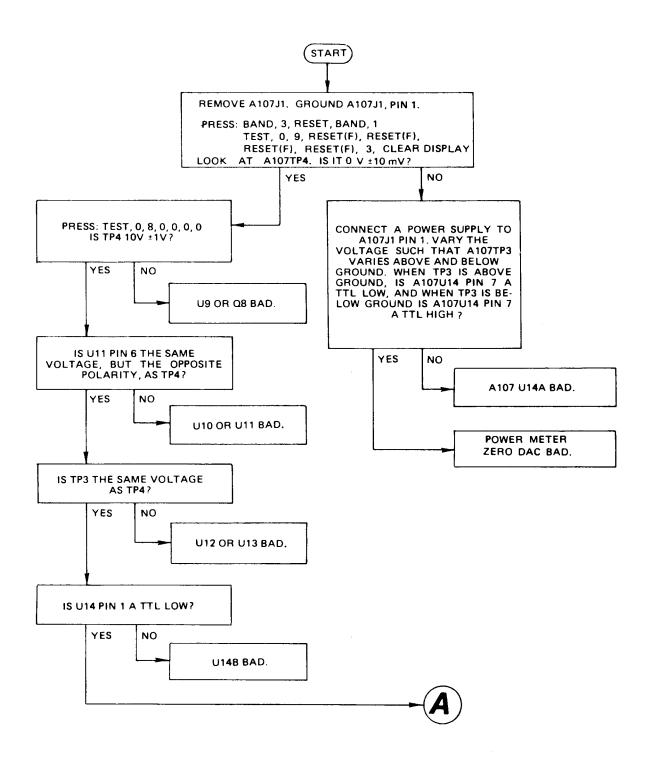


Figure 6-18. Power Meter and Power Meter Zero DAC

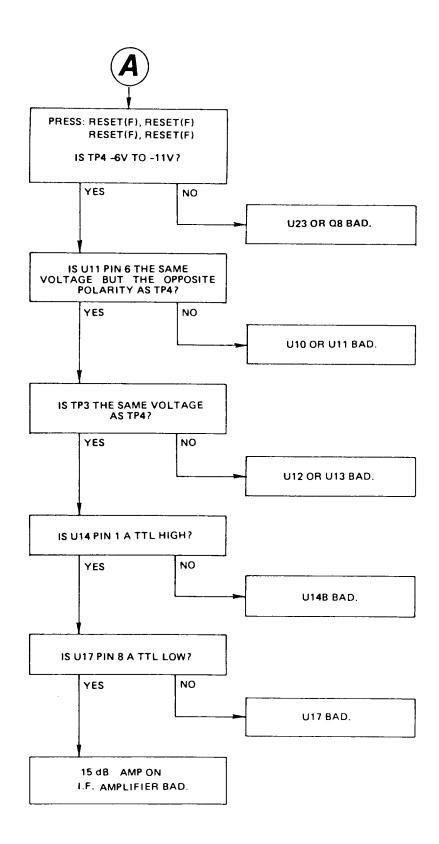


Figure 6-18. Power Meter and Power Meter Zero DAC, continued

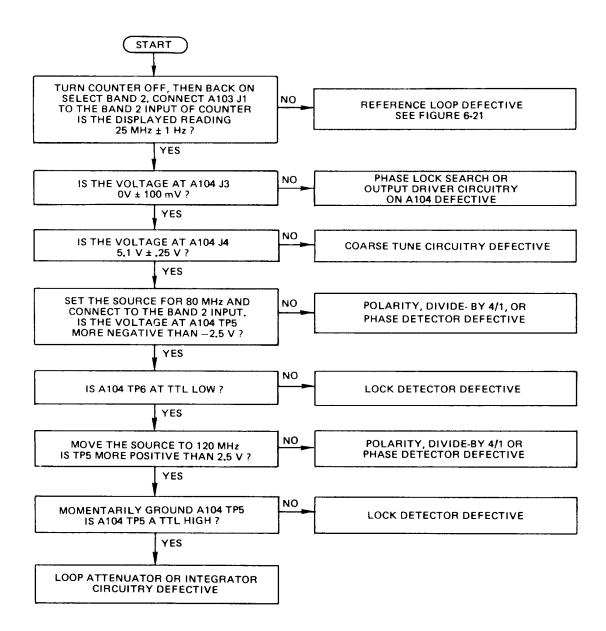


Figure 6-19. Source Lock

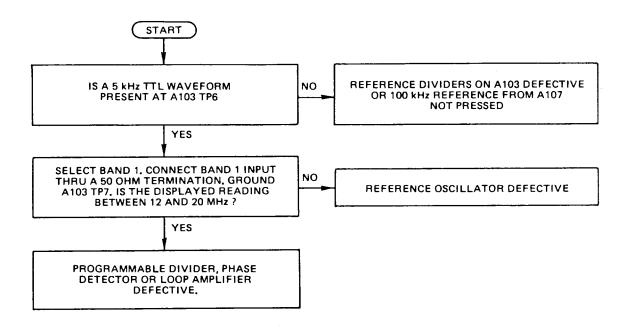


Figure 6-20. Reference Loop

Section 7 Adjustments and Calibrations

GENERAL

To correctly adjust the 575B or 578B counter use the following procedures. Adjustments should only be made if the counter does not operate as specified, or following the replacement of components. If the adjustments do not result in the performance specified then refer to the troubleshooting section of this manual. The test equipment required is:

MANUFACTURER	MODEL	DESCRIPTION	CRITICAL PARAMETERS
Tektronic	475	Oscilloscope	General Purpose
Fluke	8050A	D.V.M.	41/4 digit resolution
H.P.	182C, 8559A	Spectrum Analyzer	125 MHz
Wavetek	2002	Sweeper	10 MHz – 2 GHz
EIP	931	Microwave Source	1 – 20 GHz
H.P.	8690A, 8696A	Microwave Sweeper	20 GHz – 26.5 GHz
EIP	2000017	Service Kit	See Appendix A (A-3)

POWER SUPPLY ADJUSTMENTS

Prior to making any adjustments to the power supply the counter should warm up at least 20 minutes.

Voltages are measured on the back of the Interconnect board (A100), or on the back of the Power Supply board (A101).

- 1. Connect the Digital Volt Meter (DVM) between ground and +12V.
- 2. Adjust A101 R5 until the voltage measures +12.000 VCD \pm .010 VDC.
- 3. Connect the DVM between ground and -12 V.
- 4. Adjust A101 R17 until the voltage measures -12.000 VDC \pm .010 VDC.

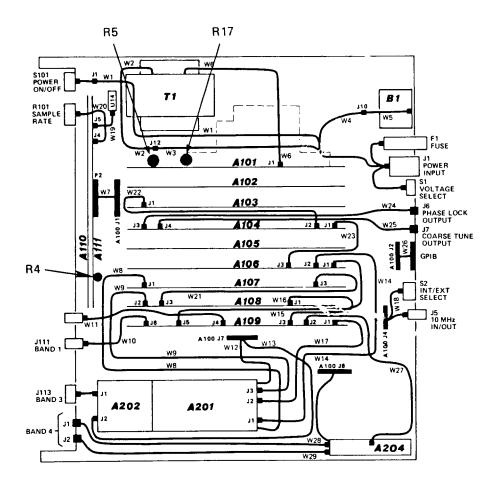


Figure 7-1. Adjustment Locations.

YIG DAC CALIBRATION PROCESS

THEORY

The purpose of this process is to compensate the nonlinearity of the YIG and DAC error. The process allows a software route start in the EEPROM. The instrument generates a YIG DAC correction table, which resides in EEPROM. After the YIG searches for and centers on a signal, the software corrects the DAC reading (not the DAC itself) according to the correction table. This process yields the true YIG frequency. Then the program tunes the VCO according to the true YIG frequency instead of the ERROR DAC reading.

Each entry of the correction table contains two values:

- (1) the YIG frequency and
- (2) the DAC reading

Each value consists of 2 bytes. The YIG frequency is represented in hex in 2 MHz increments. For example, if the YIG frequency is 1 GHz then:

$$1 \text{ GHz} = 1000 \text{ MHz} = 2 * 500 \text{ MHz} = 2 * 01F4 \text{ (hex)}$$

and "01F4" is what is written to the table.

The table looks like this:

entry 1	YIG freq 1	DAC reading 1*
entry 2	YIG freq 2	DAC reading 2
entry N	YIG freq n	DAC reading n*

where N must be at least 2 and can be as much as 248. *The values in entry 1 and N are extrapolated.

YIG DAC CORRECTION TABLE

Given a DAC reading D, the software first searches through the second row of the table. If D is equal to an exact DAC reading in entry n, where 1 <= n <= 248, then the software generates the corresponding YIG frequency reading. If D falls between 2 consecutive DAC readings in entry p and q, where 1 <= p < q <= 248, then the software uses a linear interpolation algorithm to find the corresponding YIG frequency Y as shown in the following equation:

If:
$$\frac{DAC q - DAC p}{YIG q - YIG p} = \frac{D - DAC p}{Y - YIG p}$$

then Y is:

$$Y = (D - DAC p) * \frac{YIG q - YIG p}{DAC q - DAC p} + YIG p$$

NOTE

When Y is being calculated, the multiplication is performed before the division to avoid precision error.

If for some reason the instrument cannot find a suitable DAC reading entry, ERROR #40 is generated to indicate error in the correction table.

CORRECTION TABLE SETUP

Setting up the correction table is actually the YIG DAC calibration process. The user enters "Test 90" to activate the process. At first the table contains two entries:

	YIG frequency	DAC number
default 1	0	0 hex
default 2	3FFF hex	3FFF hex

The user applies a synthesized signal Y1 GHz to the counter, then enters Y1 GHz through the counter's front panel or via GPIB. After the user enters the number, a routine converts that number to hexadecimal, stores it to the table as the YIG frequency of entry #2, and shifts the original entry #2 to entry #3. Then the counter sweeps the YIG to look for the signal and center the YIG on it. If the searching and centering are successful, the DAC number D1 is read and stored as DAC # of entry #2 of the table. Now the table looks like this:

default 1	0	0		
entry 1	Y1	D1		
default 2	3FFF	3FFF		

The user can repeat the above sequence up to 246 times with the following restrictions:

- (1) the sequence must be repeated at least two times.
- (2) the frequency entered must be greater than the previous frequency.

If either of the two requirements above are not fulfilled or the counter cannot center the YIG on the signal, the whole process is aborted and the correction table is not altered.

After N repetitions, the correction table will be as follows:

default 1.	0	0		
entry 1.	Y1	D1		
entry 2.	Y2	D2		
entry N-1.	Y N-1	D N-1		
entry N.	YN	DN		
default 2.	3FFF	3FFF		

where $2 \le N \le 246$.

Since default values are used for the first and the last entry, they must be corrected before the user exits the calibration process. The software accomplishes this task by using Y1, Y2, D1, D2 to extrapolate default 1 and Y N-1, YN, D N-1, DN to extrapolate default 2.

The equation is:

$$Y = \frac{D * (Y2 - Y1) + Y1 * D2 - Y2 * D1}{D2 - D1}$$

The final correction table looks like this:

extrapolated entry 0.	Y0	D0		
entry 1.	Y1	D1		
entry 2.	Y2	D2		
• • •				
entry N-1	Y N-1	D N-1		
entry N	YN	DN		
extrapolated entry N+1	Y N+1	Y N+1		

where $2 \le N \le 246$.

FORMAT AND ADDRESS OF THE CORRECTION TABLE

The correction table resides in EEPROM.

Address: 0C00 hex

Format:

where "yyyy" means 2 bytes of YIG frequency

"dddd" means 2 bytes of DAC reading

"FFFF FFFF" represents 4 bytes of end of table mark and

"EEEE" means for software usage.

NOTE

Before performing this procedure A108 S-1 must be open. (A108 U4 Pin 17 will be high). After calibration, S1 must be on (A108 U4 P17) low to protect calibration.

CALIBRATION PROCEDURE

Manual Calibration

- 1. Press "BAND 3" on the front panel.
- 2. Press "TEST 90" on front panel. the counter will then display "F01".
- 3. Apply a synthesized 1-GHz signal at 0 dBm to Band 3 of the counter.
- 4. Enter "1" and press "GHz" on the front panel.
- 5. Counter should display "F02".
- 6. Apply a synthesized 1.3-GHz signal at 0 dBm to Band 3 of the counter.
- 7. Enter "1", ".", "3" and press "GHz" on the front panel.
- 8. Counter should display "F03".
- 9. Apply a synthesized 10-GHz signal at 0 dBm to Band 3 of the counter.
- 10. Enter "1", "0" and press "GHz" on the front panel.
- 11. Counter should display "F04".
- 12. Apply a synthesized 20-GHz signal at 0 dBm to Band 3 of the counter.
- 13. Enter "1", "8" and press "GHz" on the front panel.
- 14. Counter should display "F05".
- 15. Go to step 28 if the model of the counter is 535B/575B/575B.
- 16. Apply a synthesized 22-GHz signal at 0 dBm to Band 3 of the counter.
- 17. Enter "2", "2" and press "GHz" on the front panel.

- 18. Counter should display "F06".
- 19. Apply a synthesized 24-GHz signal at 0 dBm to Band 3 of the counter.
- 20. Enter "2", "4" and press "GHz" on the front panel.
- 21. Counter should display "F07".
- 22. Apply a synthesized signal 25.5 GHz at 0 dBm to Band 3 of the counter.
- 23. Enter "2", "5", ".", "5" and press "GHz" on the front panel.
- 24. Counter should display "F08".
- 25. Apply a synthesized signal 26.5 GHz at 0 dBm to Band 3 of the counter.
- 26. Enter "2", "6", ".", "5" and press "GHz" on the front panel.
- 27. Counter should display "F09".
- 28. Press "CLEAR DATA" to abort the process, or press "CLEAR DISPLAY" to exit the process.

NOTE:

If the counter can not find or center on the signal, it will display an ERROR #42 message.

NOTE:

The above frequencies are required to calibrate the counter. Other frequencies are at user's choice.

Calibration using GPIB controller.

- 1. Output "B3TA90" to the counter.
- 2. Command the signal source to generate 1 GHz at 0 dBm.
- 3. Output "1G" to the counter.
- 4. Command the signal source to generate 1.3 GHz at 0 dBm.
- 5. Output "1.3G" to the counter.
- 6. Command the signal source to generate 10 GHz at 0 dBm.
- 7. Output "10G" to the counter.
- 8. Command the signal source to generate 20 GHz at 0 dBm.
- 9. Output "18G" to the counter.
- 10. Go to step 19 if the model of the counter is 535B/575B/575B.
- 11. Command the signal source to generate 22 GHz at 0 dBm.
- 12. Output "22G" to the counter.

- 13. Command the signal source to generate 24 GHz at 0 dBm.
- 14. Output "24G" to the counter.
- 15. Command the signal source to generate 25.5 GHz at 0 dBm.
- 16. Output "25.5G" to the counter.
- 17. Command the signal source to generate 26.5 GHz at 0 dBm.
- 18. Output "26.5G" to the counter.
- 19. Output "C" to exit the calibration process or "D" to abort the process.

NOTE:

When the counter has acquired the signal and is ready to accept the next frequency, the GPIB status byte bit 0 will be set to 1. This can be recognized through service request.

TIME BASE CALIBRATION

NOTE

For Option 03, 04, 05, refer to Option Section of Manual.

It is important to note that the precision of the time base calibration directly affects overall counter accuracy. Reasons for recalibration, and the procedures to be used, should be thoroughly understood before attempting any readjustment.

The fractional error in the frequency indicated by the counter is equal to the negative of the fractional frequency error of the Time Base Oscillator with respect to its true value. That is:

$$\frac{\Delta^{f}s}{f_{s}} = \frac{\Delta^{f}t}{f_{t}}$$

where f_s is the true frequency of the measured signal, and f_t is the true frequency of the Time Base Oscillator. Thus, the inaccuracy associated with a frequency measurement is directly related to the quality of the Time Base Oscillator, and a measure of the precision with which it was originally adjusted.

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR (TCXO)

The standard time base oscillator used in the counter is a TCXO (A113). The range of the actual measured frequencies of the oscillator will differ by no more than 1 parts in 106 if the temperature is slowly varied from 0 to +50 degrees C.

With a stable input frequency, the measurement indicated by the counter will fluctuate in proportion to the TCXO drift. To center this fluctuation on the true value of the measured signal, each TCXO has imprinted on its side the frequency setting required at +25 degrees C.

At approximate room temperature (+25 degrees C), the slope of the frequency vs. temperature curve is normally no worse than ± 1 X 10^{-7} parts per degree C. When the counter is used in an ordinary laboratory environment, the TCXO may be set as close to 10,000,000 Hz as desired. In this environment, a peak-to-peak temperature variation of 5° C will result in a measured signal error of no more than \pm 2.5 X 10^{-7} parts. This signal error is due to the temperature characteristics of the Time Base Oscillator.

The natural aging characteristics of the crystal in the Time Base Oscillator can also cause inaccurate signal measurements. Aging refers to the long term, irreversible change in frequency (generally in the positive direction) which all quartz oscillators experience. The magnitude of this frequency fluctuation in the TCXO is as specified. This may improve when in continuous operation.

Error due to aging adds directly to error due to temperature. The number of times the counter requires recalibration depends on the environment in which the counter operates, and upon the level of accuracy required.

For example, if the counter is subjected to the full operation temperature range one month after proper initial adjustments, the inaccuracy could vary from $+1.3 \times 10^{-6}$ parts to -0.7×10^{-6} parts.

TCXO CALIBRATION PROCEDURES

METHOD 1 (with accurate frequency counter)

- 1. Remove top cover of counter. Connect counter to reliable power source. Note ambient temperature.
- 2. Measure the frequency of the TCXO (at the rear panel 10 MHz connector) with a second counter of known calibration accuracy.
- 3. Adjust the TCXO by turning the calibration screw on the TCXO case until the measured frequency equals that shown on the TCXO calibration label.

METHOD 2 (with accurate frequency source)

1. Apply a 10 000 000 Hz signal from a frequency standard (or other oscillator of suitable accuracy and stability) to the Band 1 input of the counter.

		RESOL				
2.	Press		$igcup_{\bullet}$	(1	Hz	resolution)

 Adjust the TCXO until the reading on the counter is offset from 10 000 000 Hz by the negative of the frequency shown on the TCXO. For example, if the TCXO calibration label shows a frequency of 10 000 003 Hz, adjust the TCXO until the counter displays 9 999 997 Hz.

DISPLAY INTENSITY

On the front panel logic assembly (A111), R4 may be adjusted to provide the most comfortable display intensity.

Section 8 Performance Tests

GENERAL

These tests are for the basic counter. Performance tests for options are in Section 10. These tests will enable the user to verify that the counter is operating within specifications.

VARIABLE LINE VOLTAGE

During the performance tests, the counter should be connected to the power source, through a variable voltage device, so that line voltage may be varied $\pm 10\%$ from nominal. This will assure proper operating of the counter under various supply conditions.

REQUIRED TEST EQUIPMENT (or equivalent)

MANUFACTURER	MODEL	DESCRIPTION	CRITICAL PARAMETERS
H.P.	651B	Signal Generator	10 Hz – 10 MHz
Wavetek	2002	Sweeper	10 MHz – 2 GHz
EIP	931	Microwave Source	1 GHz – 20 GHz
H.P.	8690A, 8696A	Microwave Sweeper	20 GHz – 26.5 GHz

BAND 1 (10 Hz - 100 MHz)

- 1. Set the counter to Band 1.
- 2. Connect the signal source output, through a 50 ohm shunt feedthrough resistor, to the Band 1 input on the counter.
- 3. Set the signal level to 25 mv RMS (-19 dBm into 50 ohms).
- 4. Vary the signal from 10 Hz to 100 MHz (changing signal source as required). The counter should display the correct input frequency.
- 5. Connect the phase lock output to the phase lock input of the signal source.
- 6. Set the signal source for an input of 50 MHz.
- 7. Phase lock the counter at 10 MHz, 50 MHz, and 100 MHz. Verify that the counter phase locks.

BAND 2 (10 MHz - 1 GHz)

- 1. Set the counter to Band 2.
- 2. Connect the signal source output to the Band 2 input of the counter.
- 3. Set the signal level to -20 dBm (22 mv RMS).
- Vary the signal input from 10 MHz to 1 GHz.
 (The counter should display the correct input frequency.)
- 5. Set the source frequency to within 50 MHz of the following lock frequencies: 100 MHz, 500 MHz, and 1 GHz. Verify that the counter phase locks.

BAND 3

(578B: 1 GHz - 26.5 GHz) (575B: 1 GHz - 20 GHz)

- 1. Set the counter to Band 3.
- 2. Connect the signal source output to the Band 3 input of the counter.
- 3. Vary the signal frequency from 1 GHz to 20/26.5 GHz (changing the signal source as required) at the following levels.

1 GHz – 1.2 GHz	-25 dBm (12 mv RMS)
1.2 GHz – 12.4 GHz	-30 dBm (7 mv RMS)
12.4 GHz – 20 GHz	-25 dBm (12 mv RMS)
20 GHz – 26.5 GHz	-20 dBm (22 mv RMS)

The counter should display the correct input frequency.

- 4. Connect the coarse tune output and the phase lock output to the signal source.
- 5. Phase lock the counter at 2 GHz, 10 GHz, and 20 GHz. Verify that the counter phase locks.

Section 9 Functional Description and Illustrated Parts Breakdown

This section contains a functional description, a parts list, an illustration and a schematic diagram for each printed circuit board used in this counter.

The parts list is broken down by types of components, listed in alphanumeric sequence. The components that have a different reference designator (REF DES), but have the same EIP part number, are described for the first such component listed. Subsequent descriptions of that component will refer to the first entry. The total number of like components used on the same assembly will be listed with the first entry in the column identified as UNITS PER ASSY.

The last two columns of the parts list will supply the name of the manufacturer and their Federal Supply Code for Manufacturers (FSCM) number. (See Appendix B.)

Pages 9-3 through 9-7 contain the top assembly of the counter and other basic information. After page 9-7 you will note that the page numbers have a three digit first number followed by a dashed number. The three digit number reflects the number of the assembly being described on those pages. The dashed number is the page sequence for that assembly description. For example, pages 105-1 through 105-5 all relate to the A105 printed circuit board assembly.

REFERENCE DESIGNATORS

Α	Assembly	0	Tunnsistan
	•	Q	Transistor
В	Battery or Fan	R	Resistor
С	Capacitor	S	Switch
CR	Diode	T	Transformer
DS	Indicator (display)	TP	Test Point
F	Fuse	U	Integrated Circuit
J	Jack or Connector	X	Socket or Holder
K	Relay		
L	Inductor		

Plug or PCB contacts

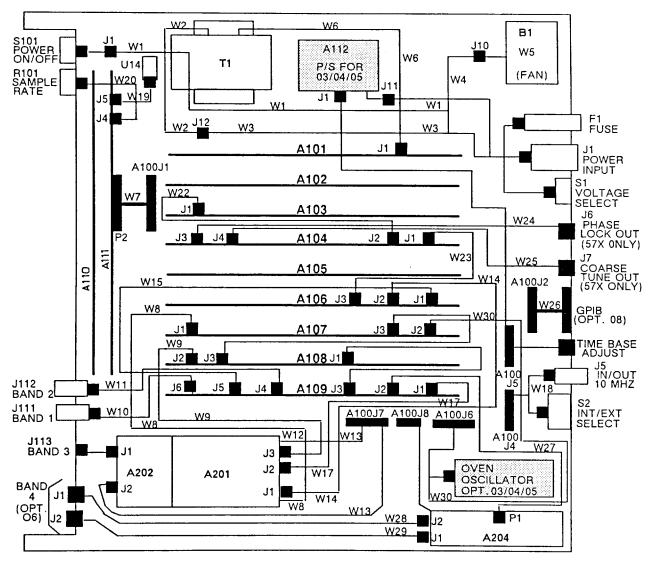


Figure 9-1. Assembly Locations and Cable Connections in Counter

CABLE CONNECTION GUIDE

FROM	CABLE	то	FROM	CABLE	то
A1S101J1	W1	A1S1, F1,J1	A108J1	W16	A109J3
A1J12	W2	A1T1	A109J1	W17	A201J2
A1S1	W3	A1J12	A1J5,S2	W18	A100J4
A1J10	W4	A1S1	A1U14	W19	A111J5
A1B1	W5	A1J10	A1R101	W20	A111J4
A101J1	W6	A1T1	A107J3	W21	A108J3
A111P2	W7	A100J1	A103J1	W22	A104J2 (57X ONLY)
A107J1	W8	A201	A104J1	W23	A106J3 (57X ONLY)
A108J2	W9	A201J3	A104J3	W24	A1J6 (57X ONLY)
A1J111	W10	A109J6	A104J4	W25	A1J7 (57X ONLY)
A1J112	W11	A109J4	A100J2	W26	A1,GPIB (OPT, 08)
A201	W12	A100J7	A204P1	W27	A109J2 (BAND 4, OPT 06)
A202J2	W13	A100J7	A204J2	W28	A1J1 (BAND 4, OPT 06)
A106J2	W14	A201J1	A204J1	W29	A1J2 (BAND 4, OPT 06)
A106J1	W15	A109J5	A107J2	W30	A100J6 (OPT. 03/04/05)

575B/578B SOURCE LOCKING MICROWAVE COUNTER

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
	COUNTER, MODEL 575B MODEL 578B	2000014-0 2000015	3	EIP EIP	34257 34257
1	FRONT PANEL ASSY Overlay, 575B Overlay, 578B	2010674-01 5210252 5210253	1 1 Ref	EIP EIP EIP	34257 34257 34257
A1R101	Sample Rate Control Assy Switch,Power	2010134-0			
	Knob, Knurled Button Set, 12 + 9 Alignment Pin Retainer Key Panel	5210223 5210220 5210190 5210191 5210378	1 1 2 1 1	5000160 5230005-02	31013
-2 A1S1	REAR PANEL ASSY Panel Conn, BNC Conn, Filter Switch, Toggle SPDT Switch, Voltage Select	2010219-0 5210379 2610024 2650005 4510001 2010159-0	1 1 1 1	KC7935 3EF1 7101H	91836 05245 09353
	Fuse Carrier Fuse Holder Fuse, 1A, SB, 250V Fuse, .500A, 250V	5000171 5000170 5000085 5000169	1 1 1	031-1666 031-1653 MDL-1A FST034-3114	71400 71400
-3	FAN ASSY Fan, 115 Volt AC Conn, Plug, 3 Pin Contact, Male Spacer	2010136-0 5000151 2620110 2620038 5210016	01 1 1 1 2 2	760/126LF/182/1115 03-06-2032 02-06-2103	
-4	FRAME KIT Panel, Side, Enclosure Trim, Front Post Trim, Handle Frame Corner Post, Front Corner Post, Rear Handle, Enclosures Label, Keyboard Operation Guide (LH)	2010151-0 5210210 5220004 5220025 5210248 5250001 5250002 5250011 5560113-0	2 2 2 2 2 2 2 2		
-5	Lable, Keyboard Operation (LH) Guide (RH) (RH)	5560113-0)1 1 		
-5	TRANSFORMER, ASSY, A1T1 Transformer, Power Conn, Plug, 9 pin Conn, Housing, 6 pin Contact, Male Contact, Female	2010359-0 4900005 2620112 2620129 2620038 2620036	1 1 1 1 Ref 7	03-06-2092 640427-6 02-06-2103 02-06-1103	0000A AMP 0000A 0000A
-6	FRONT CARD GUIDE ASSY	5210199	1	5210199	
-7	REAR CARD GUIDE ASSY	5210200	1		
-8	TOP COVER ASSY	2010212-	01 1		
-9	BOTTOM COVER	5210209	1		
-10	TILT BAIL	5000055	1		
-11 -12	Foot, Plastic Enclosure Line Cord Set - Domestic Line Cord Set - Export	5220003 5440002 5440017	1 1		

575B/578B SOURCE LOCKING MICROWAVE COUNTER (continued)

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
	PCB ASSEMBLIES			See Page No.:	
A100 A101 A102 A103 A104 A105 A106 A107 A108 A109 A110 A111	Counter Interconnect Power Supply GPIB Reference Loop/DAC Phase Lock Microprocessor Count Chain Gate Generator Converter Control Band 2 Converter Display & Keyboard Front Panel Logic	2020180 -0 2020131 -0 2020133 -02 2020201-03 2020202-02 2020215-02 2020136-03 2020197-09 2020200-04 2020139-05 2020140 -0 2020191-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100-1 101-1 102-1 103-1 104-1 105-1 106-1 107-1 108-1 109-1 110-1	
A203	Microwave Converter, Band 3 Voltage Control Usc. Amplifier :rowave Microwave Converter, Ban	2010241	1	Shown for reference only	
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 W28 W29 W29	A1S101J1 to A1S1, F1, J1 A1J12 to A1T1 A1S1 to A1J12 A1J10 to A1S1 A1B1 to A1J10 A101J1 to A1T1 A111P2 to A100J1 A107J1 to A201P3 A108J2 to A201J3 A1J111 to A109J6 A1J112 to A100J7 A202J2 to A100J7 A202J2 to A100J7 A106J2 to A201J1 A106J1 to A109J5 A108J1 to A109J5 A108J1 to A109J3 A109J1 to A201J2 A1J5, S2 to A100J4 A1U14 to A111J5 A1R101 to A111J4 A107J3 to A108J3 A103J1 to A108J3 A103J1 to A106J3 A104J3 to A1J6 A104J4 to A1J7 A100J2 to A1, GPIB A204P1 to A109J2 A204J1 to A1J2 PROMS (FOR REFERENCE ONLY) BASIC PROM SET PROM 1, Basic Program PROM 2, Basic Program PROM 3, Basic Program PROM 3, Basic Program	2010159-0 2010159-0 2010159-0 2010159-0 2010159-0 2010136 2010155 2040169 2040171 2040174 2040165 2040166 2040170 2040210 2040208 2040175 2040168 2040168 2040168 2040227 2040240 2040239 2040241 2040242 2040177 2040241 2040232	1	REVISION LEVEL OF PROMS MUST BE SPECIFIED WHEN ORDERING PROM SET	

PAGE LEFT BLANK INTENTIONALLY

PAGE LEFT BLANK INTENTIONALLY

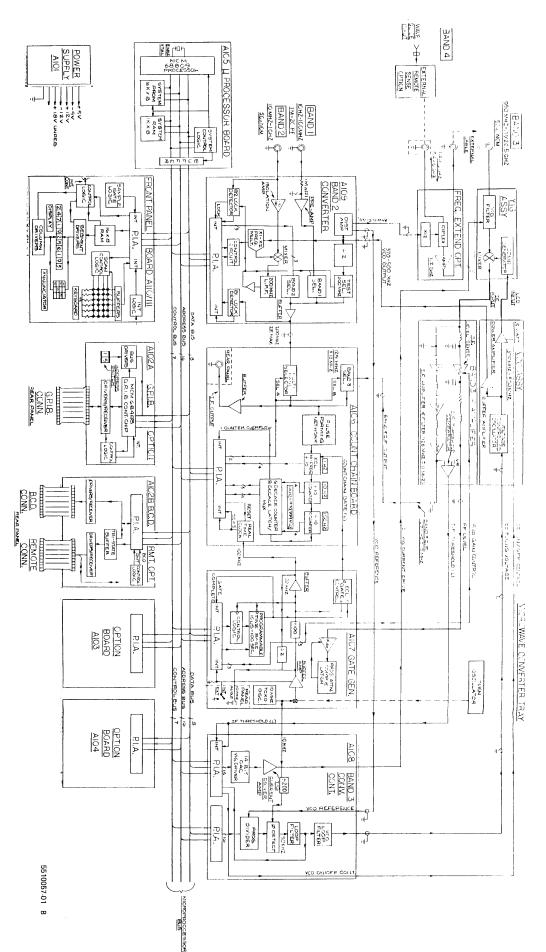


Figure 9-2. 575B/578B Block Diagram

A100 COUNTER INTERCONNECT (202180)

FUNCTIONAL DESCRIPTION NOT REQUIRED PAGE LEFT BLANK INTENTIONALLY

A100 COUNTER INTERCONNECT ASSY

2020180-G

DES DESCRIPTION NO	NO. 34257 76381 76381 0000A 0000A 0000A 0000A 02660 02660 02660
J1 Header, Str, 26 pin 2620078 1 3429 - 2302 J2 Header, Str, 50 pin 2620081 2 3433 - 2302 J3 J2 2620061 1 09 - 65 - 1049 J5 Friction Lock, 6 pin 2620090 1 09 - 65 - 1069 J6 Header, Str, 7 pin 2620186 1 09-64-1071 J7 Header, Str, 10 pin 2620187 1 09-64-1101 J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3	76381 76381 0000A 0000A 0000A 02660 02660 02660
J2 Header, Str, 50 pin 2620081 2 3433 - 2302 J3 J2 2620061 1 09 - 65 - 1049 J4 Friction Lock, 4 pin 2620090 1 09 - 65 - 1069 J5 Friction Lock, 6 pin 2620186 1 09 - 65 - 1069 J6 Header, Str, 7 pin 2620186 1 09 - 64 - 1071 J7 Header, Str, 10 pin 2620187 1 09 - 64 - 1101 J8 Friction Lock, 4 pin 2620068 1 640456 - 4 XA101 Conn, 11 position 2620183 1 5193 - 442 - 1 XA103 Thru 2620185 1 5193 - 442 - 3	76381 0000A 0000A 0000A 0000A 02660 02660 02660
J2 Header, Str, 50 pin 2620081 2 3433 - 2302 J3 J2 J4 Friction Lock, 4 pin 2620061 1 09 - 65 - 1049 J5 Friction Lock, 6 pin 2620090 1 09 - 65 - 1069 J6 Header, Str, 7 pin 2620186 1 09-64-1071 J7 Header, Str, 10 pin 2620187 1 09-64-1101 J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3	0000A 0000A 0000A 0000A 02660 02660
J3 J2 J4 Friction Lock, 4 pin 2620061 1 09 - 65 - 1049 J5 Friction Lock, 6 pin 2620090 1 09 - 65 - 1069 J6 Header, Str, 7 pin 2620186 1 09-64-1071 J7 Header, Str, 10 pin 2620187 1 09-64-1101 J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3	0000A 0000A 0000A 02660 02660 02660
J5 Friction Lock, 6 pin 2620090 1 09 - 65 - 1069 J6 Header, Str, 7 pin 2620186 1 09-64-1071 J7 Header, Str, 10 pin 2620187 1 09-64-1101 J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3 XA103 thru 1 1 1 1	0000A 0000A 0000A 02660 02660 02660
J6 Header, Str, 7 pin 2620186 1 09-64-1071 J7 Header, Str, 10 pin 2620187 1 09-64-1101 J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3 XA103 thru thru 1 1 1	0000A 0000A 02660 02660 02660
J7 Header, Str, 10 pin 2620187 1 09-64-1101 J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3 XA103 thru	0000A 02660 02660 02660
J8 Friction Lock, 4 pin 2620068 1 640456-4 XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3 XA103 thru 1 1 1	02660 02660 02660
XA101 Conn, 11 position 2620183 1 5193-442-1 XA102 Conn, 50 position 2620185 1 5193-442-3 thru	02660 02660
XA102 Conn, 50 position 2620185 1 5193-442-3 XA103 thru	02660
XA103 thru	
thru	
XA109 Conn, 30 position 2020104 / 3193-442-2	02660
	02000
	İ
	ļ
	ĺ
	1

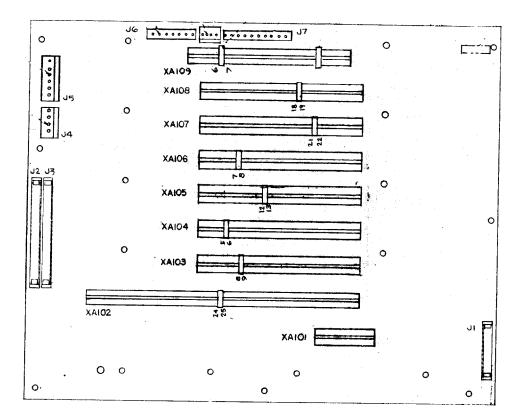


Figure 100-1. Counter Interconnect Component Locator

A MAIOS THRU MAIOS HAVE COMMON CONNECTIONS ON LINES SHOWN IF BE ASMETS.

5500180 -00 A

Figure 100-2. Counter Interconnect Schematic

The power supply furnishes all basic operating voltages required by the counter. The supply consists of two basic sub-assemblies:

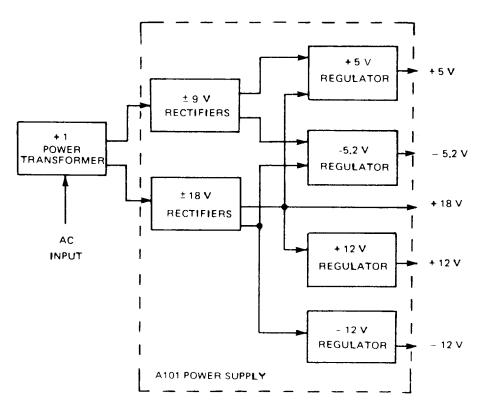
- PC Board (A101), containing the rectifiers, filter capacitors, and regulator circuitry.
- Chassis mounted components consisting of the power transformer (T1); primary wiring; F1 fuse (100/120V); the 220/240V power programming switch; and the on/off power switch (S101) mounted on the front panel.

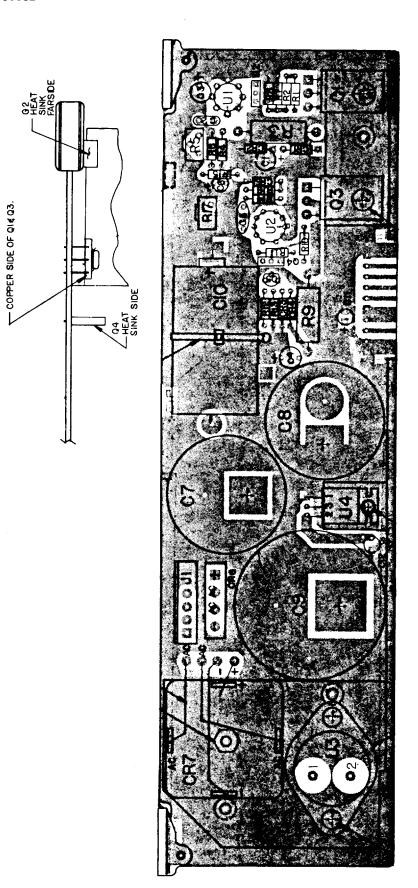
The basic voltages required by the counter are unregulated +18V, regulated +5V, -5.2V, +12V and -12V.

The input AC voltage is full wave rectified and filtered to produce DC voltages of ±9V and ±18V.

The unregulated +18V is used directly as one supply voltage. The +18V is regulated to a +12V by the action of LM305, a series pass transistor (MJE3055), and foldback current limiting circuitry. The -18V is regulated to a -12V by LM304, a series pass transistor, and foldback current limiting circuitry.

The +9V is regulated to +5V by a three terminal regulator containing thermal and current shutdown circuitry. The -9V is also regulated to -5.2V by a three terminal regulator that contains thermal and current shutdown circuitry.




Figure 101-1. Power Supply Function Diagram

PAGE LEFT BLANK INTENTIONALLY

A101 POWER SUPPLY ASSY

2020131-01 · L

					J20131-01 · L
			UNITS		TYP
REF	DECCRIPTION	EIP	PER	TVD MEG NO	1
DES	DESCRIPTION	NO.		TYP MFG NO.	FSCM
DLJ		110.	ASSY		NO.
A101	Power Supply Assy	2020131	1	EIP	34257
			_		
C1	Tant, 10µF, 20%, 25V	2300029	3	TAG 20 - 10/25(M)	14433
C2	Mica, 47 pF, 5%, 500V	2260004	1	DM10 - 470J	72136
C3	C1			_	
C4	Tant, 33µF, 20%, 20V	2300023	1	TAG 20 - 33/20 - 20	14433
C5	Cer, .001µF, 20%, 1KV	2150001	1	SGA - D10	56289
C6	Tant, 1.0μF, 20% 35V	2300008	2	TAG 20 -1.0/35 - 50	14433
C7	Elec, 14,000μF, 25V	2200017	1	3110HB143U025	80031
C8	Elec, 9,500μF, 15V	2200016	1	3110HA952U025	80031
C9	Elec, 32,000μF, 15V	2200019	1	3110RB323U015	80031
C10	Elec, 4,900μF, 15V	220020-00	1	3050JJ4920U15JM	80031
C11	C6				
C12	C1				
CR1]		
thru			1	!	
CR4	Rectifier	2704001	4	IN4001	07263
CR5	Zener, 12V	2720963] 1	IN963A	04713
CR6	Rectifier Brdg	2710029	1	MDA970 - 1	04713
CR7	Rectifier, Brdg	2710028	1	MDA990 - 1	04713
				1	
J1	Conn, 6 pin (FRCTN Lock)	2620157	1	640445-6	A0000
					1
Q1	NPN Power	4710001	2	MJE3055	04713
Q2	PNP Power	4710002	2	MJE370	04713
Q3	Q1				ĺ
Q4	Q2		1		
Q5	PNP, General Purpose	4704126	1	2N4126	04713
R1	Comp, 68 ohms, 5%, 1/4 W	4010680	2	RC07GF680J	81349
R2	Met Ox, 36 ohms, 2%, 1/4 W	4130360	1	C4/2%/36	24546
R3	Wire Wound, .66 ohms, 3%, 1/4W	4110012	2	RS - 2	91637
R4	Prec, 14.7K ohms, 1%, 1/8 W	4061472	, 1	RN55D1472F	81349
R5	Var. Cer., 500 ohm	4250014	1	72XR500	73138
R6	Prec, 2.26K ohms, 1%, 1/8 W	4062261	1	RN55D2261F	81349
R7	Met Ox, 820 ohms, 2%, 1/4 W	4130821	2	C4/2%/820	24546
R8	R7		1		
R9	R3		1		
R10	R1				
R11	Comp, 100 ohms, 5%, 1/4 W	4010101	1	RC07GF101J	81349
R12	Met Ox, 910 ohms, 2%, 1/4 W	4130911	1	C4/2%/910	24546
R13	Met Ox, 12K ohms, 2%, 1/4 W	4130123	1	C4/2%/12K	24546
R14	Prec, 2.43K ohms, 1%, 1/8 W	4062431	1	RN55D2431 F	81349
R15	Prec, 4.7K ohms, 2%, 1/4 W	4130472	1	C4/2%/4.7	24546
R16	Met Ox, 1K ohms, 2%, 1/4 W	4130102	1	C4/2%/1K	24546
R17	Var, Cer, 2K ohms	4250016	1	72XR2K	73138
	1		-		
U1	Voltage Regulator	3040305	1	LM305	0000X
U2	Voltage Regulator	3040304	1	LM304	0000X
U3	+5VDC Regulator	3057805-01		UA78H05A	07263
U4	-5.2 V Regulator	3057905	1	MC7905.2 CT	04713
	Honteink	F010:			
	Heatsink	5210196	1	EIP	34257
					1
					}
	į.		1	1	1

2020131 · L

Figure 101-2. Power Supply Component Locator

A CR7,01,03. ,U3:U4 ARE MOUNTED ON HEATSINKS.

Figure 101-3. Power Supply Schematic

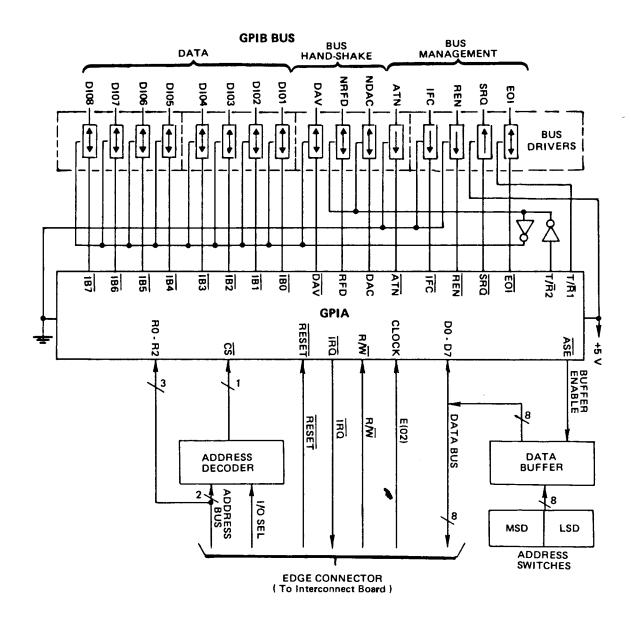
A102 GENERAL PURPOSE INTERFACE BUS (2020133)

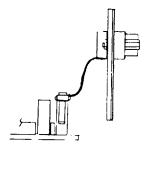
The GPIB assembly makes the 575B/578B counters fully compatible with the IEEE 488-1978 standards. With this assembly, and the PROM (A105 U19), the counter responds to remote control instructions, and can output measurement results.

The most important component on this assembly is the MC 68488 GPIA. It performs all the GPIB bus command decoding, and takes care of the HANDSHAKE processes. The A105 Microprocessor assembly receives and sends device dependent messages to the Interface Bus via GPIA.

The GPIB address of the counter can be set with the two thumb-wheel switches mounted on the board. These address switches are read by the microprocessor only during the initial power-up. When the address switches are read, the data buffer (U8) is enabled by the GPIA, putting the address switch information on the data bus.

U1 through U4 are bus transceivers. They conform to the electrical specifications of the IEEE 488-1978 standard. The open collector mode of operation is chosen for all the drivers.




Figure 102-1. GPIB Interface Block Diagram

**ADDF					ADDR COD		
Listen	Talk			binary	,		decimal
		5	4	3	2	1	*
SP	@	0	0	0	0	0	00
ļ ļ	Α	0	0	0	0	1	01
,,	В	0	0	0	1	0	02
#	С	0	0	0	1	1	03
\$	D	0	0	1	0	0	04
%	Ε	0	0	1	0	1	05
&	F	0	0	1	1	0	06
,	G	0	0	1	1	1	07
(н	0	1	0	0	0	08
)	- 1	0	1	0	0	1	09
*	J	0	1	0	1	0	10
+	K	0	1	0	1	1	11
,	L	0	1	1	0	0	12
_	M	0	1	1	0	1	13
	N	0	1	1	1	0	14
/	0	0	1	1	1	1	15
0	P	1	0	0	0	0	16
1	a	1	0	0	0	1	17
2	R	1	0	0	1	0	18
3	S	1	0	0	1	1	19
4	Т	1	0	1	0	0	20
5	U	1	0	1	0	1	21
6	V	1	0	1	1	0	22
7	W	1	0	1	1	1	23
8	Х	1	1	0	0	0	24
9	Y	1	1	0	0	1	25
:	Z	1	1	0	1	0	26
;	[1	1	0	1	1	27
<	./	1	1	1	0	0	28
=]	1	1	1	0	1	29
>	^	1	1	1	1	0	30

^{*} Decimal Talk/Listen Address is provided as a cross reference for those controllers which use decimal address.

Figure 102-2. Allowable Address Codes

^{**} Address Characters in ASCII Code.

DETAIL A-A

CONTACT	SIGNAL LINE	CONTACT	SIGNAL LINE
1	D10 1	13	DIO 5
2	DIO 2	14	0106
- 3	DIO 3	15	0107
4	DIO 4	10	BCIA
5	EOI	17	REN
6	DAV	18	GND.(6)
7	NRFD	19	GND. (7)
8	NDAC	20	GND (8)
9	IFC	21	GND. (9)
10	SRQ	22	GND. (10)
111	ATN	23	GND (II)
12	SHIELD	24	GND. LOGIC

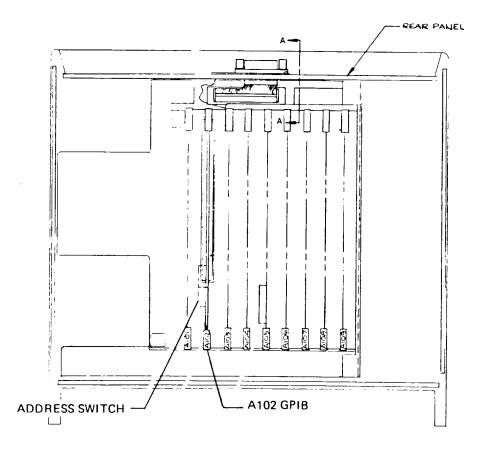


Figure 102-3. Location of GPIB in Counter

A102 GENERAL PURPOSE INTERFACE BUS

2020133-02 A

REF DES DESCRIPTION EIP NO. UNITS PER ASSY TYP MFG NO. A102 GPIB PCB ASSY 102B) 2020133 1 EIP C1 Cer, .01μF, 20%, 100V 2150003 3 TG · S10 C2 C1 C C C3 C1 C C C4 Tant, 33μF, 10%, 10V 2300015 2 TAG20 · 33/10 · 50	TYP FSCM NO.
C1 Cer, .01μF, 20%, 100V 2150003 3 TG - S10 C2 C1 C3 C1 C4 Tant, 33μF, 10%, 10V 2300015 2 TAG20 - 33/10 - 50	
C1 Cer, .01μF, 20%, 100V 2150003 3 TG - S10 C2 C1 C3 C1 C4 Tant, 33μF, 10%, 10V 2300015 2 TAG20 - 33/10 - 50	
C2 C1 C3 C1 C4 Tant, 33μF, 10%, 10V 2300015 2 TAG20 - 33/10 - 50	34257
C4 Tant, 33μF, 10%, 10V 2300015 2 TAG20 - 33/10 - 50	56289
C5 C4	14433
R1 thru	
R8 Comp, 5.6K, 5%, 1/4W 4010562 8 RC07GF562J	81349
SW1A and 4540004 2 1X2270 - 0000	
TP1 thru TP6 P.C. pin .040 diameter 2620032 6 460-2970-02-03	71279
U1 thru	
U4 Quad 3-state Bus Transciever 3053448 4 MC3448	04713
U5 Hex Inverter 3087404 1 74LS04 U6 General Purpose Interface Adaptor 3050027 1 MC68B488P	27014 04713
U7 Tri Input NAND Gate 3087410 1 74LS10	27014
U8 Oct Bus Transciever 3084245 1 74LS245	27014
W26 Cable, Flat Ribbon (Rear Panel to A100 J2) 2040177 1 EIP	34257

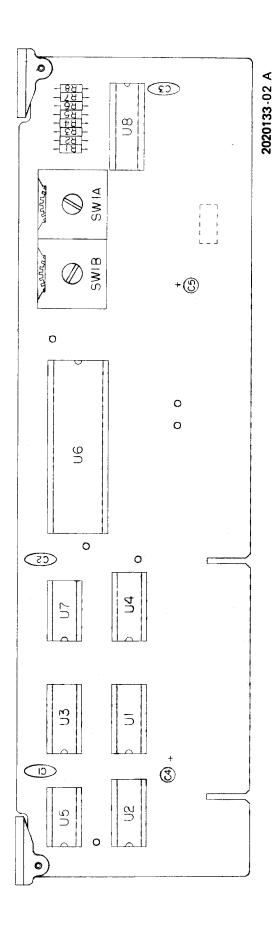


Figure 102-4. GPIB Component Locator

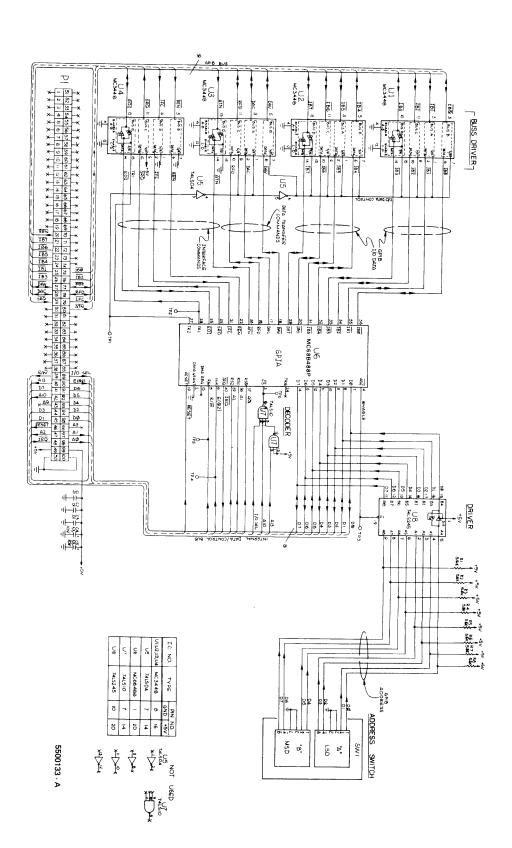


Figure 102-5. GPIB Schematic

A103 REFERENCE LOOP and DIGITAL TO ANALOG CONVERTER

(2020201)

The A103 assembly provides two major functions.

- Reference Loop (Phase Lock Loop frequency synthesizer)
- Digital to Analog Converter (DAC) (use with Option 01)

REFERENCE LOOP

The reference loop is a phase lock loop frequency synthesizer which tunes from 10.000 MHz to 49.995 MHz in 2.5 kHz steps. The synthesizer actually operates 1 octave above this range and is divided by 2 in U16B. The reason for dividing the output frequency of the synthesizer is to permit a 5 kHz sample rate at the phase detector instead of 2.5 kHz sample rate. This higher sample rate permits a higher loop bandwidth, which is desired for tuning speed and low phase noise on the output. A single LC VCO is used to cover this range by dividing its output frequency by 2 in U16A when the synthesizer output frequency is greater than 25 MHz.

An output of the VCO (via buffer U18 and divider U16A) is applied to the programmable frequency divider (U6 thru U11 and U13). The frequency divider is programmed by the microprocessor via P.I.A. U12, and latches U4 and U5. The output of the frequency divider is compared to the 5 kHz reference (derived from a 100 kHz clock signal from the gate generator board) in the phase detector U14.

A phase difference between the VCO and the 5 kHz reference will result in an output from the phase detector. The phase detector has two output ports; a pump up port and a pump down port. Pump down is U14 pin 2. Pump down is normally high, and goes low to reduce the VCO frequency. Pump up is U15 pin 6. Pump up is normally low, and goes high to increase the VCO frequency.

The outputs of the phase detector go to the charge pump which converts them to a single tri-state output. The charge pump output is open with no pump command, sources current with pump up, and sinks current with pump down. The output of the charge pump is connected to the input of the loop amplifier U19. The loop amplifier provides the proper gain and filtering to achieve the desired loop response. The output of the loop amplifier is the VCO tuning voltage.

The programmable frequency divider uses a two modulus (divide number) prescaler and two programmable counters. (Refer to figure 103-1.)

The prescaler is used to divide the VCO frequency down to a lower frequency which can be handled by low power. Shottky TTL programmable counters. The two modulus prescaler permits prescaling without loss of resolution. At the start of the divider cycle the prescaler is set to divide by the larger modulus (11), and both programmable counters have been loaded with their respective program numbers from the P.I.A. The programmable counters each decrement 1 count for each output pulse from the prescaler.

When programmable counter B (U7) reaches the count of zero, the 10/11 control flip-flop (part of U11) changes state and causes the prescaler to divide by the lower modulus (10).

When programmable counter A reaches the count of 2 the input of the PL period flip-flop (part of U11) goes high so that, on the count of 1, the flip-flop changes state. This will cause both programmable counters to be reloaded with their respective program numbers, and the 10/11 control flip-flop to reset (prescaler in 11 state). The very next count causes the PL period flip-flop to reset, starting the programmable frequency divider cycle over again. The equation for the divide ratio of the programmable frequency divider N_d is:

$$N_d = 10N_{counter A} + N_{counter B}$$

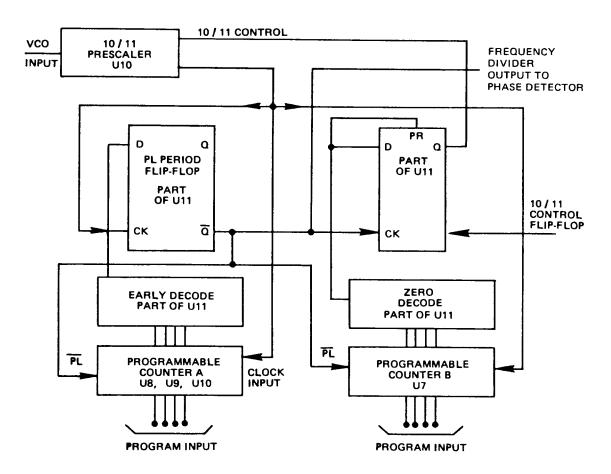
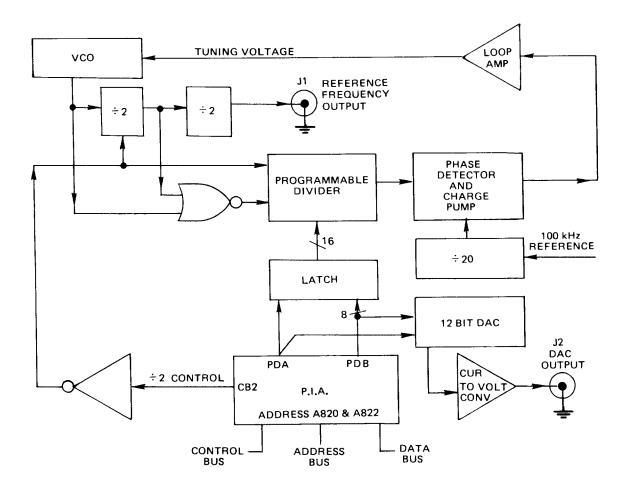


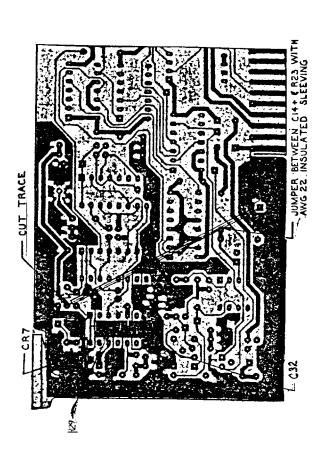
Figure 103-1. Programmable Frequency Divider Block Diagram

DIGITAL TO ANALOG CONVERTER (DAC) (Option 01)

The DAC is referenced to a 1 volt reference voltage that is generated by U1. A gain adjustment (R5) is provided to calibrate the reference to 1 volt. U3 consists of a 12 bit multiplying DAC, three individual four bit registers, and address decoding. The digital data is written to the DAC, four bits at a time, and stored in the appropriate registers. The data is then transferred simultaneously to the DAC and, in conjunction with U2, converts the digital data to an analog voltage that corresponds to the three digits selected on the front panel.

See Section 10 if DAC option 01 is installed.




Figure 103-2. Overall Block Diagram

A103 REFERENCE LOOP

2020201 -03 A

	T Total Control Control	1			
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A103	REFERENCE LOOP ASSY	2020201-01	1	EIP	
C1 thru C3 C4	Not Used Tant, 33μF, 10%, 10V	2300015	4	TAPA 33M10	
C5 thru C12	·				14433
C13 C14 C15 C16 C17 C18 C19 C20	Disc, .01μF, 20%, 100V Tant, 10μF, 20%, 25V C13 C5 C5 C4 C4 C5 C5	2150003 2300029	13 4	TG-S10 DF106M25S	56289 72136
C21 C22 C23 C24 C25	Tant, 1.0μF, 10%, 35V Cer, .047 ohm, 10%, 50V Met Film, .47μH, 10%, 63V C22 C4	2300008 2150090 2350010	1 2 1	TAPA 1.0M35 5020EM50RD473K MKT-1819-447/06	14433 EMCAP
C26 C27 C28 C29 C30 C31	Disc. $.001\mu$ F, 20% , $100V$ Tant, 100μ F, 20% , $10V$ C13 C5 C13 C26	2150001 2300039-00	2 1	5GA-D10 TAPA 100MIO	56289 14433
C32	Cap, Mica 47pF, 500V	2260004-00	1		
CR1 CR2 CR3 CR4 CR5 CR6 CR7	Not Used Dual Low Leak Fast Switch Varactor CR3 CR3 Zener, 5.1V	2710013-00 2704148 2710025 2705231	1 3 1	ID100 1N4148 MV1404 IN5231	72259 04713
L1	Not Used		•	1113231	04713
L2	Inductor, .18μΗ	3510013	1	DD-0.18	72259
R1 thru R5 R6 R7 R8 R9 R10 R11	Comp, 1K, 5%, 1/4W Comp, 4.3K, 5%, 1/4W R7	4010103 4010511 4010479-00 4010102 4010432	1 8 2 2 1	RC07GF103J RC07GF511J RC07GF479J RC07GF102F RC07GF432J	81349 81349 81349 81349 81349
R12 R13 thru R16	Comp, 220K, 5%, 1/4W R7	4010224	1	RC07GF224J	81349
R17 R18	Comp, 1.5M, 5%, 1/4W R8	4010155	1	RC07GF155J	81349
R19 R20 R21 R22	Comp, 1.2K, 5%, 1/4W Comp, 750, 5%, 1/4W R7 R7	4010122 4010751	1	RC07GF122J RC07GF751J	81349 81349
R23	Comp, 150, 5%, 1/4W	4020151-00	1	RC07GF151J	81349
R24 R25	Comp, 100, 5%, 1/4W Met Ox, 2.4K, 2%, 1/4W	4010101 4130242	1	RC07GF101J C4/2%/2.4K	81349 24546

REF DES	DESCRIPTION	EIP NO.	PER ASSY	TYP MFG NO.	TYP FSCM NO.
R26 R27 R28 R29	R24 R9 Met Ox, 2K, 2%, 1/4W R6	4130202	1	C4/2%/2K	24546
U1 thru U3 U4	Not Used Eight bit Latch	3034373	2	74C373	01295
U5 U6 U7 thru	U4 UP/DOWN Counter	3084192	4	DM74LS192	27014
U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20	U6 2-Modulous Prescaler Counter Control Logic P.I.A. Dual Flip Flop Phase Freq/Det Quad, NAND, 2 INP Dual D Flip Flop Dual Decade Counter Quad, NOR, 2 INP Op Amp, J-FET Oscillator	3112013 -02 3112014 3086821 3087474 3014044 3087400 3110131 3084490 3110102 3040071 3011648	1 1 1 1 1 1 1 1 1 1	MC12013 MC12014 MC68B21P DM74LS74 MC4044L DM74LS00 MC10131 SN74LS490 MC10102P TL071 MC1648	04713 04713 04713 27014 04713 27014 04713 01295 04713 01295 04713
thru TP8	.040D Pin, Gold	2620032	8	460-2970-02-03	71279

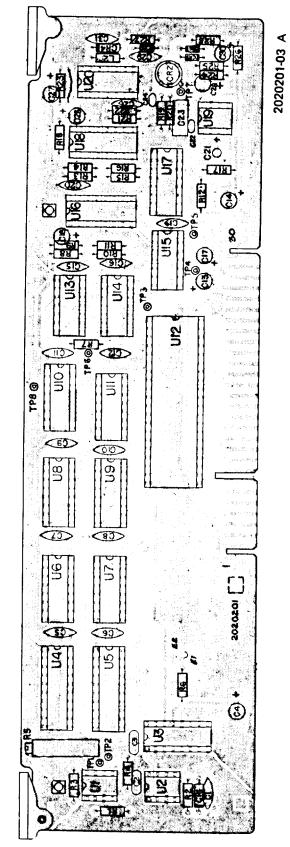


Figure 103-3. DAC / Reference Loop Component Locator

NOTE: C1 THRU C3, CR1, J2, R1 THRU R5, AND U1 THRU U3 ARE NOT USED ON -01.

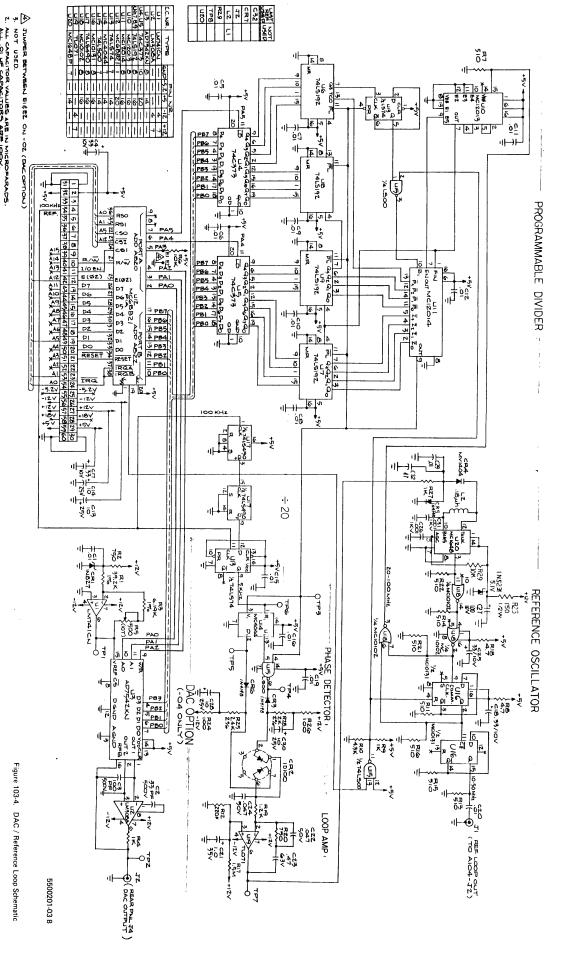


Figure 103-4. DAC / Reference Loop Schematic

NOTES: UNLESS OTHERWISE SPECIFIED.

2. ALL CAPACITOR VALUES ARE IN MICROPARADS.
1. ALL PI OF CAPACITORS ARE IOOV.
1. ALL REDISTORS ARE VAW, 5%, AND ARE EXPRESSED IN

A104 PHASE LOCK (2020202)

The phase lock assembly contains the circuitry required to phase lock the down converted external voltage controlled oscillator (VCO) frequency from the IF to a clock derived reference frequency. The assembly also contains a lock detector to determine if the loop is within normal operating limits, and a coarse tune output provision for dual input VCO's.

The phase lock circuitry consists of the following major blocks:

- IF Buffer/Divider
- Polarity Selection
- Phase Detector
- Loop Attenuator
- Output Driver
- Shallow Search
- Coarse Tune
- Lock Detector
- Bandwidth Selection

IF BUFFER/DIVIDE BY 4

The IF input is buffered or divided by four and gated into the polarity selection circuitry. The direct buffer includes an IF range of 10 MHz to 50 MHz. The divide by four function is selected when the IF range is 50 MHz to 200 MHz.

POLARITY SELECTION

The polarity of the VCO is measured by the microprocessor and the polarity circuitry is directed by the microprocessor to input the reference frequency, or the IF frequency, to the reference port of the Phase Detector as appropriate. This digitally changes the polarity of the Phase Detector output.

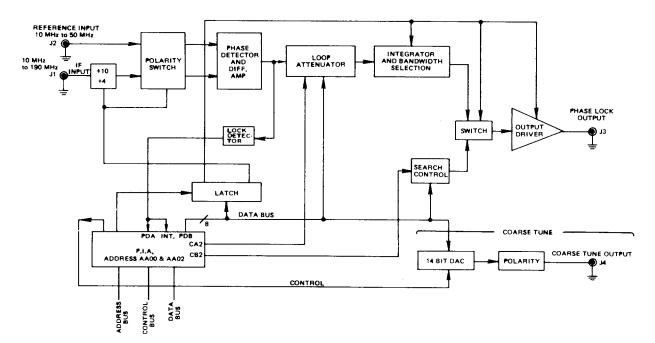


Figure 104-1. Phase Lock Assembly

PHASE DETECTOR

The phase detector circuitry compares the reference input to the IF conditioned VCO input, and outputs a voltage proportional to the phase difference between the two inputs. A digital comparator produces a differential output to a low pass filter which is amplified to a maximum output magnitude of +8V for $\pm \pi$ radians variation in phase difference. An IF conditioned frequency above or below the reference frequency will yield a steady state error signal of plus or minus 8V.

LOOP ATTENUATOR

The phase detector error signal is attenuated under microprocessor control by a gain DAC. At the lowest VCO gain constant the DAC will be set to the highest gain. Additionally, when the IF Divide by Four is selected, the gain of the DAC is increased by four to compensate the loop. This process produces a constant loop gain for different gain VCO's.

OUTPUT DRIVER

The output driver buffers the bandwidth selection error signal to provide either $\pm 10V$ or ± 75 MA depending upon the input port selected on the VCO. For high gain VCO's the stage can be changed to a gain of one sixteenth by the microprocessor providing either $\pm .6V$ or $\pm .5$ MA.

SHALLOW SEARCH

The microprocessor disconnects the normal error signal from the Loop Attenuator and drives the Bandwidth selection circuitry with a reference voltage from a gain controlled DAC. This process is used to measure the VCO gain, which allows you to adjust the Loop Attenuator setting and polarity.

Figure 104-2. Loop Gain vs. Modulation Frequency

COARSE TUNE

The microprocessor controls a gain DAC to move the coarse tune output voltage between 0 and +10V for a two input VCO.

LOCK DETECTOR

A window detector determines if the phase detector is operating within normal range. The lock detector input time constant is short when out of lock to make initial acquisition of lock rapid and independent of selected bandwidth. The time constant after the phase detector is within range is made long to reduce nuisance tripping.

BANDWIDTH SELECTION

The gain corrected error signal is applied to an integrator that has three selectable bandwidths. The error signal can be disconnected and the output of the shallow search DAC substituted to control the output under microprocessor control. A second switch on the input to the bandwidth selection circuitry is closed during out of lock conditions to provide rapid acquisition of phase lock.

PHASE LOCK FREQUENCY CENTERING

The purpose of the 57X Phase Lock Loop is to reduce the frequency variation present on a VCO. Within the bandwidth and dynamic range of the PLL there will be an effective modulation sensitivity as shown in Figure 104-2. Figure 104-3 gives the maximum Peak to Peak deviation versus modulation frequency of an unlocked VCO that the loop will linearly handle. Above the solid line in each bandwidth, the indicated count will average some number above or below the desired frequency. Below the limit line, the count will average the desired number. The PLL in this high noise or high modulation condition acts to center the frequency.

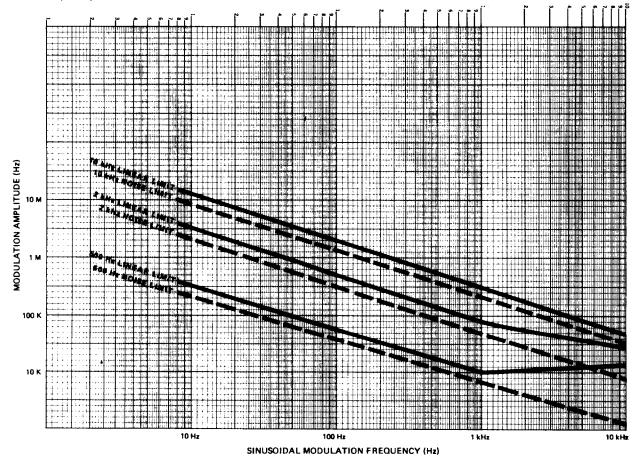
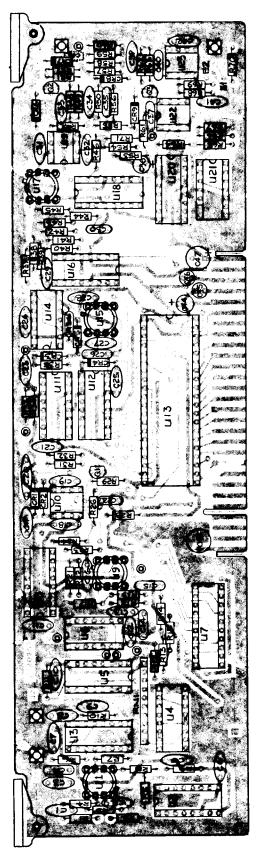


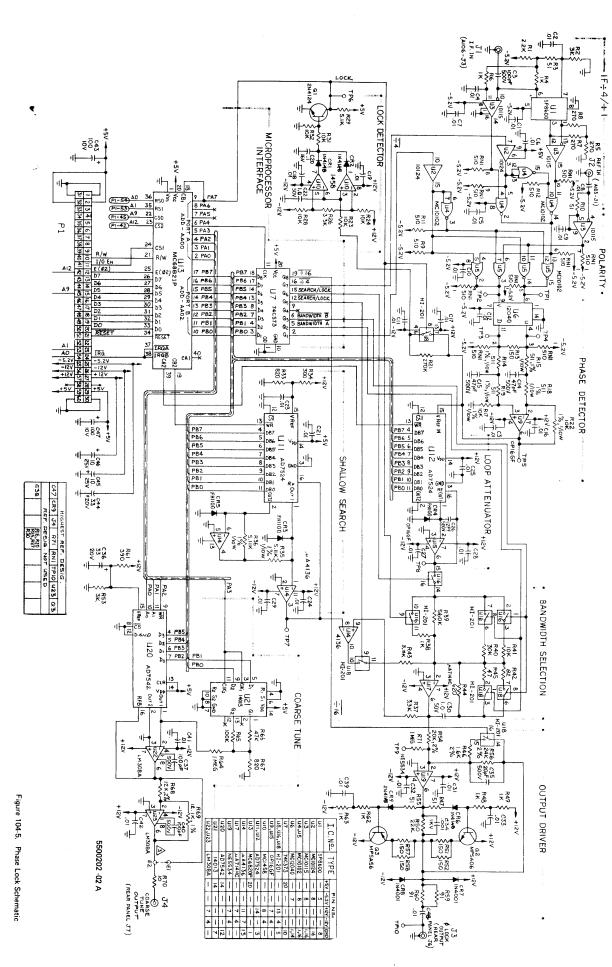
Figure 104-3. Maximum Modulation Amplitude vs. Modulation Frequency to Maintain Phase Lock


HASE LUCK				020202-02 A
DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
PHASE LOCK ASSY	2020202-01	1	EIP	34257
Disc, .01μF, 20%, 100V	2150003	29	TG-S10	56289
Mica, 100pF, 5%, 500V	2250002	3	DM 15101J	72136
Mica, 47pF, 5%, 500V C14	2250017	2	DM 15470J	72136
Cer, 0.1μF, 20%, 16V	2150012	1	RT16-0.1MFD/16V	72136
Cer, 1.0μF, 20%, 50V	2150023	2	RE50-1-05MC	Murata
C1 Mica, 12pF, 5%, 500V	2250004	1	DM15CD120J	72136
C22				
Cer, .001µF, 20%, 1 KV Mica, 20pF, 5%, 500V Tant, 33µF, 10%, 20V C3 Not Used C1 C3	2150001 2250008 2300023	1 1 2	5GA-D10 DM 15200J TAPA 33M20	56289 72136 14433
C1 Tant, 100µF, 20%, 10V	2300039	2	TAPA 100M10	14433
Tant, 10μF, 20%, 25V C45	2300029	2	DF106M25S	72136
Cer, X7R, 0.1μF,10%,50V Fast Switch	2150028-00 2704148	1 4	RC50-104KB IN4148	51406
Hot Carrier CR3 CR3	2710004-00	3	5082-2835	НР
CR1 Power Rectifier CR7 CR1	2704001	2	IN4001	
Comp, 2.2K, 5%, 1/4W Comp, 3K, 5%, 1/4W Comp, 51 ohm, 5%, 1/4W Comp, 1K, 5%, 1/4W Comp, 270 ohm, 5%, 1/4W R4 R5 R5 Comp, 510 ohm, 5%, 1/4W R3 R9	4010222 4010302 4010510 4010102 4010271 4010511	1 2 4 7 3	RC07GF222J RC07GF302J RC07GF510J RC07GF102J RC07GF271J	81349 81349 81349 81349 81349
	PHASE LOCK ASSY Disc, .01μF, 20%, 100V C1 Mica, 100pF, 5%, 500V C1 Mica, 47pF, 5%, 500V C14 C1 Cer, 0.1μF, 20%, 16V C1 Cer, 1.0μF, 20%, 50V C1 Mica, 12pF, 5%, 500V C1 C22 C1 Cer, .001μF, 20%, 1 KV Mica, 20pF, 5%, 500V Tant, 33μF, 10%, 20V C3 Not Used C1 C1 C1 Tant, 100μF, 20%, 10V C36 Tant, 10μF, 20%, 25V C45 C43 Cer, X7R, 0.1μF, 10%, 50V Fast Switch CR1 Hot Carrier CR3 CR1 Power Rectifier CR7 CR1 Comp, 2.2K, 5%, 1/4W Comp, 3K, 5%, 1/4W Comp, 3K, 5%, 1/4W Comp, 51 ohm, 5%, 1/4W Comp, 270 ohm, 5%, 1/4W R4 R5 R5 Comp, 510 ohm, 5%, 1/4W R3	DESCRIPTION NO . PHASE LOCK ASSY 2020202-01 Disc, .01μF, 20%, 100V 2150003 C1 Mica, 100pF, 5%, 500V 2250002 C1 Mica, 47pF, 5%, 500V 2250017 C1 Cer, 0.1μF, 20%, 16V 2150012 C1 Cer, 1.0μF, 20%, 50V 2150023 C1 Mica, 12pF, 5%, 500V 2250004 C1 C22 2300023 C3 C3 2300023 C3 C1 2300023 C3 C1 2300023 C3 C1 2300023 C36 C1 2300023 C36 C23 2300029 C45 C43 270404 C81 C45 2704148 C81<	DESCRIPTION EIP NO. PER ASSY PHASE LOCK ASSY 2020202-01 1 Disc, .01μF, 20%, 100V C1 Mica, 100pF, 5%, 500V 2150003 29 Mica, 100pF, 5%, 500V 2250002 3 C1 Mica, 47pF, 5%, 500V C14 2250017 2 C1 Cer, 0.1μF, 20%, 16V C1 C2 2150012 1 C1 Mica, 12pF, 5%, 500V 2150023 2 C1 Mica, 12pF, 5%, 500V 2250004 1 C1 C22 2250004 1 C1 C22 2150001 1 C1 C22 2250009 1 C1 C22 2150001 1 C1 C22 2250009 1 C1 C22 2300023 2 C3 Not Used 2300023 2 C3 Tant, 10μF, 20%, 10V 2300029 2 C45 C43 Cer, X7R, 0.1μF, 10%,50V 2300029 2 C45 C43 Cer, X7R, 0.1μF, 10%,50V 2150028-00 1 Fast Switch CR1 2704001 2 CR3 CR3 CR3 CR3 CR3 CR3 CR3 CR4 2704001 2 Comp, 2.2K,	DESCRIPTION EIP NO. PER ASSY TYP MFG NO. PHASE LOCK ASSY 2020202-01 1 EIP ASSY Disc., 01μF, 20%, 100V CI Mica, 100pF, 5%, 500V 2150003 29 TG-S10 CI Mica, 100pF, 5%, 500V C14 2250002 3 DM 15101J C1 Mica, 47pF, 5%, 500V C14 2250017 2 DM 15470J C1 Cer, 0.1μF, 20%, 16V C1 C1 C2 C2 2150012 1 RT16-0.1MFD/16V C1 Mica, 12pF, 5%, 500V 2150023 2 RE50-1-05MC C1 Mica, 20pF, 5%, 500V 2250004 1 DM15CD120J C1 C2 C2 C1 C2 C1 C2 C3 C1 C2 C2 C2 C3 C3 Not Used C1 C3

	HASE LOCK			2.	020202 -02 A
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R13 R14 R15 R16	Comp, 150 ohm, 5%, 1/4W Met Film, 511 ohm, 1%, 1/10W R14 Not Used	4010151 4055110	5 4	RC07GF151J RN55C5110F	81349 81349
R17 R18 R19 R20	Met Film, 10K, 1%, 1/10W R14 R14 Not Used	4051002	2	RN55C1002F	81349
R21 R22	Comp, 270K, 5%, 1/4W	4010274	1	RC07GF274J	81349
R23 R24 R25	Comp, 10K, 5%, 1/4W R23 Not Used	4010103	6	RC07GF103J	81349
R26 R27 R28	Comp, 3.3K, 5%, 1/4W Not Used R23	4010332	3	RC07GF332J	81349
R29 R30 R31 R32	Comp, 5.1K, 5%, 1/4W Not Used R23 R23	4010512	1	RC07GF512J	81349
R33	Comp, 820, 5%, 1/4W	4010821	2	RC07GF821J	81349
R34 R35	Comp, 300, 5%, 1/4W Met Film, 5.11K, 1%, 1/10W	4010301 4055111	1 2	RC07GF301J	81349
R36 R37 R38	R35 R26 R4	4095111	2	RN55C5111F	81349
R39 R40 R41	Comp, 560K, 5%, 1/4W Comp, 30K, 5%, 1/4 W R23	4010564 4010303	1 1	RC07GF564J RC07GF303J	81349 81349
R42 R43	Comp, 82 ohm, 5%, 1/4 W R26	4010820	1	RC07GF820J	81349
R44	Comp, 620, 5%, 1/4W	4010621	1	RC07GF621J	81349
R45	Comp, 47, 5%, 1/4 W	4010470	1	RC07GF470J	81349
R46 R47 R48 R49 R50	Met Ox, 1.6K, 2%, 1/4W R3 R4 R4 Comp, 22K, 5%, 1/4W	4130162	1	CR/2%/1.6K	24546
R51 R52 R53	R13 R13 R2	4010223	1	RC07GF223J	81349
R54 R55	Met Ox, 20K, 2%, 1/4W R3	4130203	1	C4/2%/20K	24546
R56 R57 R58	Met Ox, 24K, 2%, 1/4W R13 R13	4130243	1	C4/2%/24K	24546
R59 R60	Comp, 91, 5%, 1/4W R59	4010910	2	RC07GF910J	81349
R61 R62 R63	Comp, 390, 5%, 1/4W R4 R4	4010391	1	RC07GF391J	81349
R64	Comp, 1M, 5%, 1/4W	4010105	2	RC07GF105J	81349
R65 R66	Comp, 100K, 5%, 1/4W Comp, 47K, 5%, 1/4W	4010104	1	RC07GF104J	81349
R67	R33	4010473	1	RC07GF473J	81349
R68	Met Ox, 12K, 2%, 1/4 W	4130123	1	C4/2%/12K	24546
R69	Met Ox, 12.1K, 1%, 1/10 W	4051212	1	RN55C1212F	81349
R70	Comp, 10, 5%, 1/4 W	4010100	1	RC07GF100J	81349

A104 PHASE LOCK 2020202-02 A

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
RN1	Network, 9 x 510 ohm, (9R)	4170008	1	785-1-R510	08740
U1 U2 U3 U4 U5	High Speed Divide-by-4 Quad MECL 10K, Translator MECL Quad Line Receiver ECL 10K, 1 2-Inp Nors U4	3018600 3110124 3110115 3110102	1 1 1 2	SP8600B MC10124L MC10115 MC10102P	0000C 04731 04731 04731
U6 U7 U8 U9 U10 U11	Phase Frequency Detector 8 Bit Latch Analog Switch Op. Amplifier Lin. Op. Amplifier DAC, 8 Bit, 1/2 LSB CMOS	3012040 3034373 3030201 3040016 3041458 3057524	1 1 3 2 1 2	MC1204 OL 74C373 H13-0201-5 OP16GJ MC1458C AD7524JN	04731 27014 Harris PMI 04713 AD
U12 U13 U14 U15 U16	U11 P.I.A. Quad Op Amp U9 U8	3086821 3044136	1 1	MC68B21P μA4136	04713 07263
U17 U18	Op Amp, Low Noise	3040714	1	μA714HC	07263
U19 U20 U21 U22 U23	Low Noise Op Amp 12 Bit Latching DAC Flip Flop Op Amp Buffer U22	3045534 3057542 3034013 3040308	1 1 1 2	NE5534N AD7542JN MC 14013 LM308AN	72136 AD 04731 0000X
Q1 Q2 Q3	PNPN, General Purpose NPN, Amplifier PNP, Amplifier	4704124 4710033 4710036	1 1 1	2N4124 MPSA-06 MPSA56	04713 04713 04713
TP1 thru TP10	,040D Pin, Gold	2620032	10	460-2970-02-03	71279


PAGE LEFT BLANK INTENTIONALLY

2020202 -02 A

Figure 104-4. Phase Lock Component Locator

The Microprocessor board contains the microprocessor, the control logic, and the firmware for controlling the operation of the counter. The board can be divided into five functional blocks.

- 1. Microprocessor
- 2. Power-up Reset Circuit
- 3. Address Decoder
- 4. RAM and Program Memory
- Control Logic Buffers

MICROPROCESSOR

The counter uses a Motorola 68B09 microprocessor. The clock generation circuitry for the digital system is contained within the 68B09. The only external components required for clock generation are two 24-pF capacitor and an AT-cut 8-MHz crystal.

The NMI, FIRO, and DMA functions of the 68B09 are not used. Their corresponding control lines are always disabled. The processor state indicators (BS, BA) are also not used by the counter. The HALT and the MRDY controls are connected to the Interconnect board through the edge connector.

POWER-UP RESET CIRCUIT

The Power-up Reset circuit provides a 100-ms reset signal to the entire digital system after the counter is turned on. The reset signal remains true as long as the +5-volt power supply stays below +4 volts.

When the counter is turned on, the voltage across C5 is 0 volts. The output of the comparator U1 is at logic low. The capacitor C5 slowly charges up through R2. The output of the comparator remains low as long as the voltage across C5 is lower than the voltage on pin 3 of the comparator. When the voltage across C5 becomes higher than that on pin 3, the output of the comparator becomes true, removing the reset signal. R3 is provided for hysteresis purposes. When power is removed, C5 will discharge quickly through CR1.

ADDRESS DECODER

The address decoding is performed by a 4-to-16 line decoder. The 64K-byte address space is divided into sixteen 4K-byte blocks, one of which is always enabled.

The enable signals for the memory blocks become true no later than 51 ns after Q. They stay true until a maximum of 40 ns after E has become false. The 4-to-16-line decoder has open collector outputs. This enables the addressed memory block to be enlarged by wire-0Ring two or more outputs together.

The memory map for the counter is as follows:

Volatile RAM Memory	0000 - 07FF
Non-Volatile RAM Memory	0800 - 0FFF
1/0	1000 - 2FFF
Signature Analysis	3000 - 3FFF
Program Memory	4000 - FFEF
Reserved (6809)	FFFO - FFF1
	FFF2 – FFF3
	FFF4 – FFF5
	FFF6 – FFF7
IRQ	FFF8 – FFF9
	FFFA – FFFB
	FFFC - FFFD
RESET	FFFE - FFFF

RAM AND PROGRAM MEMORY

RAM

A 2K-byte-wide volatile RAM is provided for the normal operation of the counter. To prevent data from being erroneously written into the RAM, the chip enable signal is active only when the E clock and the RAM memory block enable signal from the address decoder are both active and when the A11 address line is at logic 1.

PROM

A block of 48K bytes of memory are assigned for system program. The Microprocessor board contains three 28-pin sockets for PROMs. Each of the sockets is wired to accept a 16K-byte PROM.

CONTROL LOGIC AND BUFFERS

The digital system of the counter contains three buses: the data bus, the address bus, and the control bus.

DATA BUS

The data bus originates from the microprocessor. For signature analysis, the data bus can be disconnected from the rest of the system at the microprocessor by removing jumper header E1. The data bus on the microprocessor board is buffered from the rest of the digital system. The data bus buffer is enabled only when the address space assigned to I/O is addressed. The direction of the data bus buffer is determined by the state of the R/W control line.

CONTROL BUS

The control bus contains eight control lines. Five of the control lines originate from the Microprocessor board. The other three control lines originate from the rest of the digital system.

R/W, E, and Q originate from the microprocessor. Reset is supplied by the power-up reset circuit. The I/O SEL control line is true when A15 and A14 are at logic 0 and either A13 or A12 or both are at logic 1 levels. The IRQ control line is the wired-OR of the interrupt request lines. MRDY is the wired-OR of the memory ready control lines. The MRDY and HALT control lines are provided for future expansion.

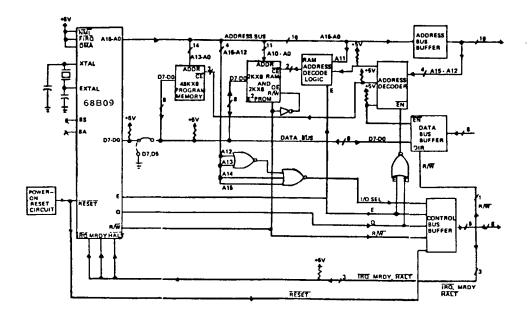


Figure 105-1. Functional Block Diagram, PMicroprocessor

A105 MICROPROCESSOR

2020215-02 A

REF DES	DESCRIPTION	EIP NO.	PER ASSY	TYP MFG NO.	TYP FSCM NO.
C1	Mica, 24pF, 5%, 500V	2260018-00	2	CD10ED240J03	14655
C2 C3	C1 Disc, 0.01μF, 20%, 100V	2150003-00	14	TG - S10	56289
C4 C5 C6 C7 C8	C3 Tant, 3.9µF, 10%, 15V C3 C3 C3	2300027–00	1	196D395X9015HA1	56289
C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	C3 Tant, 33μF, 10V C3	2300015-00	2	TAPA33M10	14433
CR1 CR2	H/C ZNR, 3.9V	2710016-00 2705228-01	1 1	5082–2835 IN5228	28480 04713
R1 R2 R3 R4	Met Ox, IM, 5%, 1/4W Met Ox, 22K, 5%, 1/4W Met Ox, 300K, 5%, 1/4W Not used	4010105-00 4010223-00 4010304-00	1 1 1	RC07GF105J RC07GF223J RC07GF304J	81349 81349 81349
R5 R6 R7 R8 R9	Met Ox, 240, 5%, 1/4W Met Ox, 4.7K, 5%, 1/4W R6 R6 R6	4010241-00 4010472-00	1 4	RC07GF241J RC07GF472J	81349 81349
RN1 RN2 RN3	Res Ntwrk, 9 x 10k, 2%, 2W RN1 RN1	4170003-00	3	782-1-R10K	80740
TP1 Thru TP10	Res Ntwrk, 9x4.7k, 2%, 1.25W Pin, T.P. Swage	4170014-00 2620032-00	1 10	4310R-101-472 460-2970-02-03	32997 71279
U1 U2 U3 U4	Int: Volt Comparator Microprocessor Dvr Hex Bus/Buffer Not used	3050311-00 3050025-00 3084365-00	1 1 1 1	MLM311P1 MC68B09 SN74LS365N	27014 04713 01295
U5 U6 U7 U8	3 Inp NOR Gate Dvr Line/Oct Buff Invg Not used Xcvr Octal Bus	3087427-00 3084244-00 3084245-00	1 2	DM74LS27 SN74LS244N SN74LS245N	27014 01295 01295
				,	3.230

A105 MICROPROCESSOR

2020215-02 A

REF DES	DESCRIPTION	EIP NO.	PER ASSY	TYP MFG NO.	TYP FSCM NO.
U9 U10 U11 U12	2K x 8 CMOS RAM 2K x 8E PROM PROM Set: 16K x 8 U11	3056116-00 6420000-00 2060006-00	1 1 1	HM6116LP-4 X2816A	62786 60395 27128
U13 U14 U15	U11 3 INP NAND Gate U6	3087410-00	1	DM74LS10	27014
U16 U17	4-16 Decoder Hex Inverter	3074159-00 3087404-00	1 1 1	SN74159N DM74LS04	01295 27014
E1	Prog, Header, 16 Pin DIP	5000205-00	1	16-675-191T	51167
Y1	Xtal, 8.00 MHz	2030100-00	1	MP-1	ATRON
•					

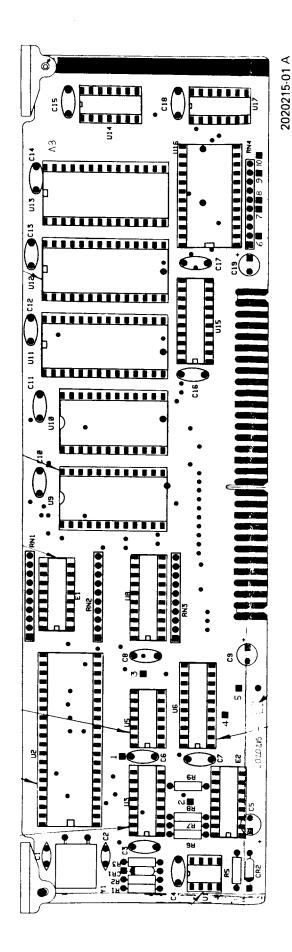
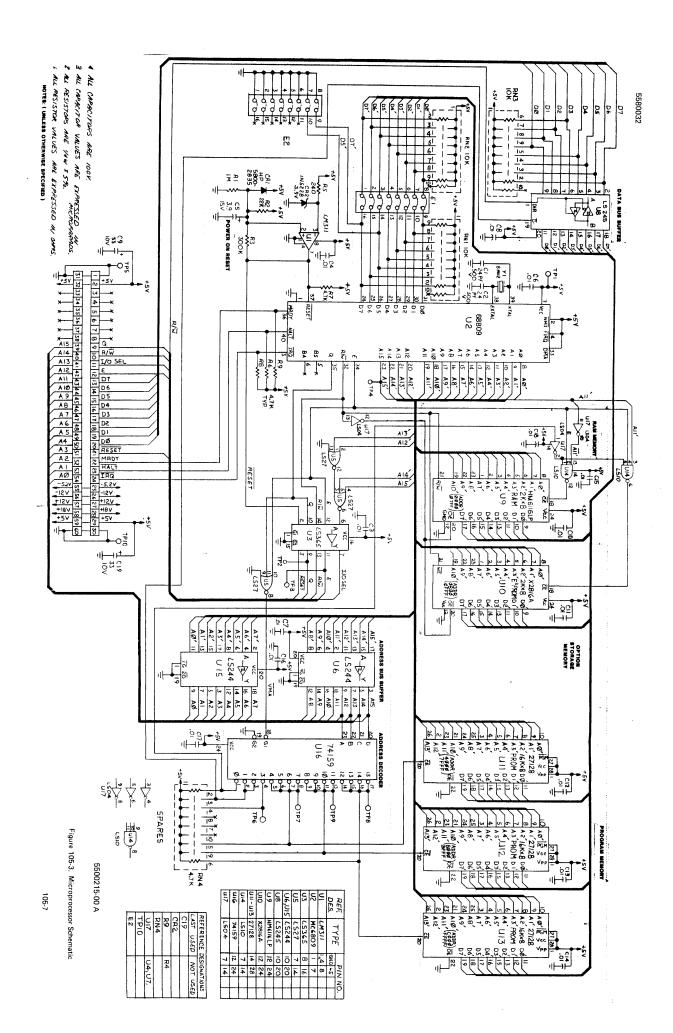



Figure 85-2. Component Locator, Microprocessor

·			

A106 COUNT CHAIN (2020136)

The Count Chain assembly receives IF signals from the Band 3 IF Amplifier (A201B) and the Band 2 converter A109). It also receives a gate signal and a 100 kHz reference signal from the Gate Generator (A107). The Count Chain assembly selects the appropriate IF signal, gates it, and counts it to produce a BCD output that represents the input frequency. It also produces IF output signals at J3 and J4.

The A106 board receives two IF input signals on J1 and J2. The appropriate input is selected by enabling one of two differential amplifiers (U1A or U1B). Enabling of the appropriate amplifier is achieved by turning on a transistor switch (Q11 or Q12). The appropriate transistor is turned on by the output of an open collector inverter (U7C or U7A) driven by a TTL signal from the PIA (U10).

The output of the input selector differentially drives a squaring circuit. The squaring circuit consists of a differentially driven current mirror (Q1) driving a tunnel diode (CR4). The voltage across the tunnel diode changes abruptly between two states (approximately 0.2V and 0.5V). The signal across the diode drives the pulse forming circuit. This circuit begins with a high speed differential amplifier (Q2 and Q3). The output of this amplifier drives Q4 which is a current switch. The square wave current, from Q4's collector, drives an inductor (L1). The voltage across the inductor is a series of pulses; a positive pulse when Q4 turns on and a negative pulse when Q4 turns off. Diode CR5 tends to remove the negative pulses and increases the damping to improve the amplitude of the positive pulses. The positive pulses from the generator drive a pulse inverter (Q6). The pulse inverter is a high-speed zero bias amplifier that is biased at cut off by diode CR6.

The output of the pulse inverter (Q6) drives the input to the first decade counter (U2). The bias for the U2 input is established by a tracking bias supply (U3, Q7). The voltage at TP2 is equal to the voltage on U2 pin 1, plus a fixed DC offset selected by R47. The BCD outputs from U2 are slew-rate limited, and can only be seen on an oscilloscope after the counting ends and comes to rest. The carry output U2 pin 9 is an ECL level signal, and is always visible.

The ECL output of U2 drives an ECL to TTL converter (Q8, Q9 and Q10). This converter is a differential amplifier with a cascade output buffer (Q8). The response of Q8 is improved by inductive peaking provided by L2. The output of Q8 drives a decade counter (U4) which in turn drives a third decade counter (U5). The BCD outputs of U4 and U5 are connected to a 6 decade counter (U6) which derives its clock information directly from the BCD outputs of U5. When counting is finished, 8 decades of BCD data are read by the microprocessor (through the PIA U10) from U6 by a time multiplex process. The multiplexer (set to the first digit by the end of the previous reset clock) loads the multiplex latches with the Latch Load clock, and steps to the remaining 7 digits with 7 pulses on the Scan Clock line. The first decade of BCD data from U2 is read directly from the PIA.

A single reset line is used to reset all count stages to zero before the next count cycle begins.

A real-time clock (U8, U9) is also on the count chain assembly. This circuit takes the 100kHz reference signal that is coming from the Counter Interconnect Assembly (A100) and divides it by 10,000 to give a 10Hz (100ms) clock. The output from this clock is fed to the PIA to allow the microprocessor to gather time information at a 10Hz rate for timing functions within the program.

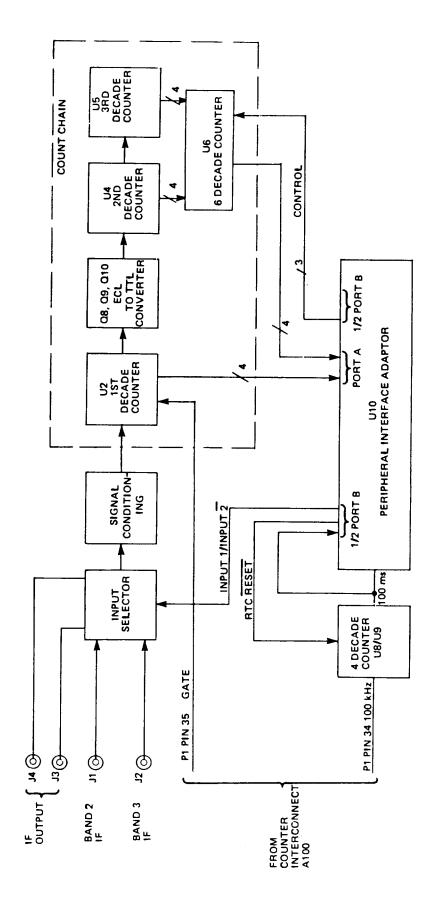
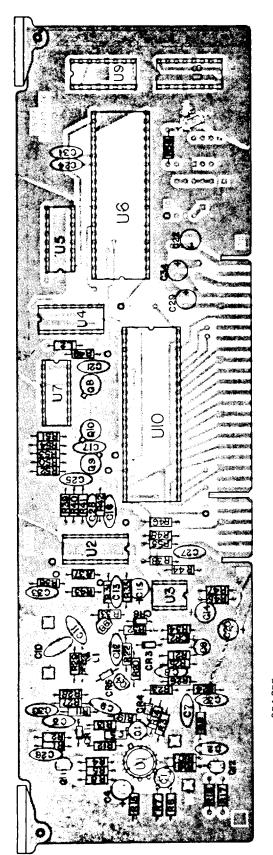
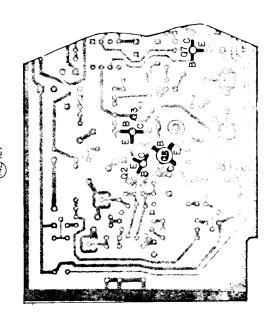


Figure 106-1. Count Chain Functional Diagram

A106 COUNT CHAIN ASSY


2020136-03 C


	COOKT CHAIR ASST				2020136-03
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A106	Count Chain Assy	2020136	1	EIP	34257
C1 C2 C3 C4	Tant, 33μF, 20%, 10V Cer., .01μF, 20%, 100V C2 C1	2300015 2150003	5 17	TAG 20 - 33/10 - 50 TG - S10	14433 56289
C5 C6 C7	Mica, 10pF, 5%, 500V Tant, 10μF, 20%, 25V C2	2260012 2300029	1 4	DM15CD100J03 DF106M25S	72136 72136
C8 C9 C10 C11	C2 Cer., .001μF, 20%, 1KV C2 Not Used	2150001	3	5GA - D10	56289
C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 thru C28 C29 C30 thru C33 C34	C9 C2 C6 C6 C2 C9 Not Used Not Used C1 C2 C1				
CR1 CR2 CR3	General Purpose Zener, 6.2V CR1	2704148 2705234	3 1	IN4148 IN5234	07263 04713
CR4 CR5 CR6 CR7	Tunnel, Switching Hot Carrier CR1 Not Used	2710033 2710004-00	1	G00010C 5082 - 2835	20754 28480
L1 L2	Part of Board Inductor, 1μΗ	3510003	1	DD 1.0	72259
Q1 Q2 Q3	PNP, RF NPN, MICROWAVE Q2	4704959 4710032	1 3	2N4959 NEO2137	04713 33279
Q4 Q5 Q6 Q7	PNP, RF PNP, RF, Graded 2N5179 NPN, RF Q2	4710010 4710013 4710026	1 1 1	MPS - H81 4705179 NE73432B	04713 34257 0000S
Q8 Q9 Q10 Q11	NPN, RF Q8 Q8 PNP, General Purpose	4705179	3	2N4126	04713
Q12	Q11	4704126	2	2N4126	04713

		r	,		
REF		EIP	UNITS		TYP
DES	DESCRIPTION	NO.	PER	TYP MFG NO.	FSCM
DLS		NO.	ASSY		NO.
R1	Comp., 1.5K, 5%, 1/4 W	4010152	2	RC07GF152J	81349
R2	Comp., 6.2K, 5%, 1/4 W	4010622	2	RC07GF622J	81349
R3	Comp., 51 ohm, 2%, 1/4 W	4130510	2	C4/2%/51	24546
R4	Comp., 5.1K, 5%, 1/4 W	4010512	2	RC07GF512J	81349
R5	Comp., 2.7K, 5%, 1/4 W	4010272	2	RC07GF272J	81349
R6	Comp., 51 ohm, 5%, 1/4 W	4010510	1	RC07GF510J	81349
R7	Met Ox, 2K, 2%, 1/4 W	4130202	3	C4/2%/2K	24546
R8	Comp., 510 ohm, 5%, 1/4 W	4010511	1	RC07GF511J	81349
R9	Comp., 5.6 ohm, 5%, 1/4 W	4010569	5	RC07GF5R6J	81349
R10	R5				
R11	R9	•			
R12	Met Ox, 68 ohm, 2%, 1/4 W	4130680	1	C4/2%/68	24546
R13	Met Ox, 43 ohm, 2%, 1/4 W	4130430	1	C4/2%/43	24546
R14	Met Ox, 3.9K, 2%, 1/4 W	4130392	1	C4/2%/3.9K	24546
R15	R7				}
R16	R4				
R17	R1				į
R18	R2				
R19	Comp., 100 ohm, 5%, 1/4 W	4010101	1	RC07GF101J	81349
R20	Met Ox, 56 ohm, 2%, 1/4 W	4130560	2	C4/2%/56	24546
R21	R9	110000	_	3 1/2/0/33	
R22	R20				
R23	Comp., 200 ohm, 2%, 1/4 W	4130201	1	RL07S201G	24546
R24	R9	4130201	·	1120702010	2.0.0
R25	Met Ox, S.A.T. (2K, 2% Nom)	4130999	1	C4/2%/XX	24546
	Met Ox, 3.A.1. (2R, 2% Notif) Met Ox, 39 ohm, 2%, 1/4 W	4130390	2	C4/2%/39	24546
R26 R27	R23	4130330		04/2/0/00	24040
		4130271	1	C4/2%/270	24546
R28	Met Ox, 270 ohm, 2%, 1/4 W	4130271		34/2/0/2/0	24540
R29	R3				
R30	Not Used Comp, 10 ohm, 5%, 1/4 W	4010100	1	RC07GF100J	81349
R31	Met Ox, 47 ohm, 2%, 1/4 W	4130470	1 1	C4/2%/47	24546
R32	Met Ox, 47 ohm, 2%, 1/4 W	4130200	1	C4/2%/20	24546
R33	Met Ox, 510 ohm, 2%, 1/4 W	4130511	1	C4/2%/510	24546
R34		4130311	1	04/2/0/310	24340
R35	R9	4130102	3	C4/2%/1K	24546
R36	Met Ox, 1K, 2%, 1/4 W	4130102		C4/2/0/11K	24340
R37	R26	4010391	1	RC07GF391J	81349
R38	Comp., 390 ohm, 5%, 1/4 W	4010331	•	11007013313	01045
R39					
thru	Comp. 10 K 5% 1/4 W	4010103	4	RC07GF103J	81349
R42	Comp, 10 K, 5%, 1/4 W Met Ox, 20 K, 2%, 1/4 W	4130203	4	C4/2%/20K	24546
R43	1	7130203	7	J-12/0/2010	27570
R44	R43				
R45	R36 R43				
R46	Met Ox, 18 ohm, 2%, 1/4 W (NOM) SAT	4130999	1	C4/2%/18	24546
R47	R43	7,30333	'	37,277,0	24540
R48	Met Ox. 240 ohm, 2%, 1/4 W	4130241	1	C4/2%/240	24546
R49 R50	R23	1,1002-11	,	1	2.540
1	R23				
R51 R52	R36				
R52	Met Ox, 430 ohm, 2%, 1/4W	4130431	1	C4/2%/430	24546
nos	NICCOX, 430 OHHI, 270, 17488	1,00,101	'	3 1/2 0/ 400	
		1			
L		L	J	1	_1

A106 COUNT CHAIN ASSY, continued

REF	DECORIESTION .	EIP	UNITS	TYP MFG NO.	TYP FSCM
DES	DESCRIPTION	NO.	PER ASSY	TYP MFG NO.	NO.
R54 R55 R56	R7 Comp., 1.8K, 5%, 1/4 W Comp., 4.7K 5%, 1/4 W	4010182 4010472	1	RC07GF182J RC07GF472J	81349 81349
TP1 thru TP10	Conn., Pin, .040D	2620032	10	460-2970-0203	71279
U1 U2 U3 U4 U5 U6 U7	Dual/Diff Ampl UHF, BCD, Decade Counter Op Amplifier PST Decade Counter 4 Bit Decade Counter 6 Dec. Ctr/8 Dec. Latch Hex Inverter	3043049 3010637 3040741 3084196 3084160 3057031 3087404	1 1 1 1 1 1	CA3049T SP8637B LM741CN SN74LS196N SN74LS160N LS74031 DM74LS04N	07263 0000C 0000X 01295 01295 01295 0000X
U8 U9 U10	Decade Counter U8 Periph. Interface Adapter	3084490	1	74LS490N MC68B21P	01295

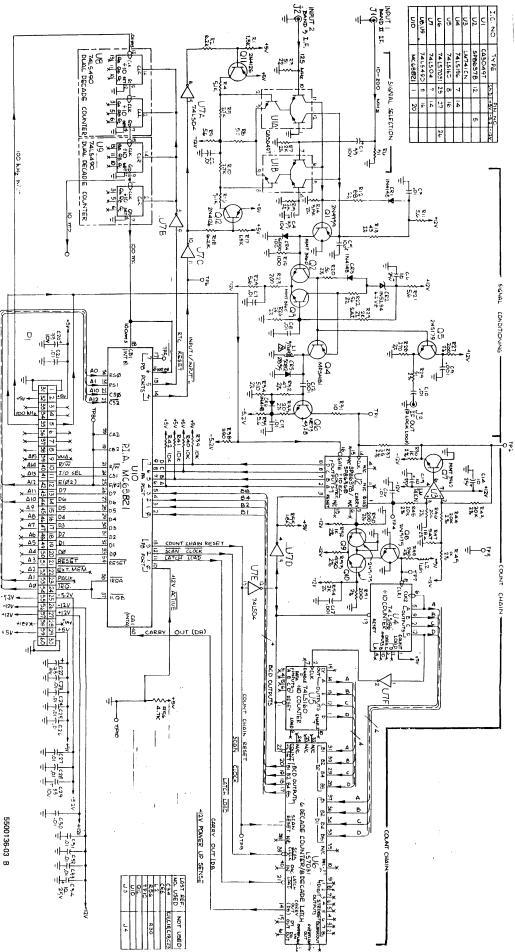


Figure 106-3. Count Chain Schematic 106-7

A NOMETOR FART OF PL. BOACD.

AN CHARCHOR WALES ARE EXPRESSED IN MIRROFARADS.

AN CAMACHOR WALES ARE EXPRESSION OF IS EXPRESSED IN OHMS.

NOTES: UNILESS OTHERWISE SPECIFIED

A107 GATE GENERATOR (2020197)

This assembly performs the following functions.

- Reference Oscillator Control
- Gate Generation
- Band 3 Amplitude Determination
- Power Meter Control (Option 02 only)

REFERENCE OSCILLATOR CONTROL

This circuit selects, as the time base for the counter, either the internal reference oscillator or an external 10 MHz signal applied to the rear panel. This circuit provides a 100 kHz TTL level clock signal for the gate generator, a 10 MHz TTL level clock signal for the microwave converter and, in the internal oscillator mode, a 10 MHz signal (1 volt p-p into 50 ohms) to the rear panel.

The 10 MHz internal reference signal is applied to a switchable "analog to TTL" converter (Q1, Q2, Q3). When the Ref Int/Ext line is high the TTL converter is enabled. One output goes to drive Q4, giving a square wave (1V p-p into 50 ohms) on the 10 MHz Ref line. A second output goes to NAND gate U1 (also switchable for signal isolation). The output of U1 goes to J3 to be used by the microwave converter. The output of U1 also goes to the clock input of U2. U2 is a dual decade divider that divides by 100. The output of U2 is a 100 kHz TTL clock signal to the gate generator.

When the Reference Int/Ext line is set to external (low) the TTL converter (Q1, Q2, Q3) and driver (Q4) are disabled, TTL converter (Q5, Q6, Q7) is enabled, and U1 is set to select the external input. An external reference signal applied to the 10 MHz reference line is then converted to the input of U2.

GATE GENERATOR

The Gate Generator must provide an accurate, stable, signal gate to the Count Chain. The gate must be switchable, in decade increments, between 100 micro sec and 1 sec. The gate generator consists of a programmable divide-by-N time base (U5), a dual flip-flop (U6A, U6B), and an ECL flip flop (U8). The divide ratio of U5, which determines the gate time, is set by U5 pins 12, 13, and 14 as follows.

Pin 12	Pin 13	Pin 14	Divide Ratio	Gate Time
0	0	1	10 ¹	100 μsec
0	1	0	10 ²	1 Msec
0	1	1	10 ³	10 Msec
1	0	0	10 ⁴	100 Msec
1	0	1	10 ⁵	1 sec

The outputs of U5 and U6 enable ECL flip-flop U8, but U8 is clocked directly from the 100kHz clock to insure gate accuracy.

When the gate is not active, U5 is permitted to free-run by holding U6B clear (T0). The gate is initialized by setting U6B. This clears U6A and clears U5 (T1). The next clock pulse sets U8 (T2). The gate is then enabled by momentarily clearing U6B (T3). The next clock sets U6A which enables U5 and U8 (T4). At T5 the gate is opened and U5 begins counting clocks (T5). Halfway through the gate, U5 pin 1 goes high (T6). After U5 has accumulated the proper number of clocks, its output, pin 1, goes low. This sets U6B, which clears U6A, and sets U8 pin 7 high (T7). The next clock closes the gate (T8). The program next clears U6B (T9), which enables the gate to free-run again (T0). See figure 107-1.



Figure 107-1. Gate Generator Timing Diagram

BAND 3 AMPLITUDE DETERMINATION

This circuit consists of three main parts.

- THE POWER METER ZERO DAC is used to automatically zero offsets in the Power Meter. It consists of two 8 bit latching DACs (U3, U4), and a comparator (U14A). All the latching DACs are driven in parallel by shift register U16, with the appropriate DAC being written to by the four write lines (U15, pins 2, 4, 6, 8). The coarse DAC (U3) has a range of ± 200 micro amps, and the fine DAC (U4) has a range of +1.5 micro amps. The Power Meter Zero DAC (U3) is adjusted so that on step 1 U14A is not set, but on the next step U14A is set. This adjusts the input to U14 to 0volts, nulling any offsets in the power meter circuit.
- THE POWER METER consists of a 15 dB switchable gain stage (U9), an 8 bit DAC used as a variable attenuator (U10), a 100 mV comparator (U14B), and a latch (half of U17). Two variable attenuators are used, on counters equipped with the option 02 power meter, to provide greater resolution (U10, U12).

When the detected signal from the microwave converter enters U9 the power meter is first set for maximum gain and minimum attenuation. Next the latch (U17) is reset. If the input to the comparator (U14B) is greater than 100mV, latch U17 will be set. The signal amplitude to the comparator is then reduced, and the process is repeated until latch U17 no longer gets set. The input amplitude can then be calculated from the switch and DAC settings. On counters without the power meter option the amplitude is calculated to a 3dB resolution. On counters with the power meter option the amplitude is calculated to a resolution of 0.1dB.

The POWER METER PROM (Option 02 only) contains a logic comparator (U21), a 2K x 8 PROM (U20), and a bus driver (U19). The logic comparator is connected to the microprocessor address bus, and is configured to decode the 2K address range from 4000 Hex to 47FF Hex. The comparator output drives the chip select of the PROM and the bus driver. The PROM contains the Power Meter program as well as the power correction factors. Bus driver U19 is used as a buffer for driving the microprocessor data bus.

PERIPHERAL INTERFACE ADAPTER (PIA)

The Peripheral Interface Adapter (U18) is used as the microprocessor I/O port. It has an address range from 9900 Hex to 9903 Hex. Peripheral Port A is at address 9900, and Peripheral Port B is at address 9902.

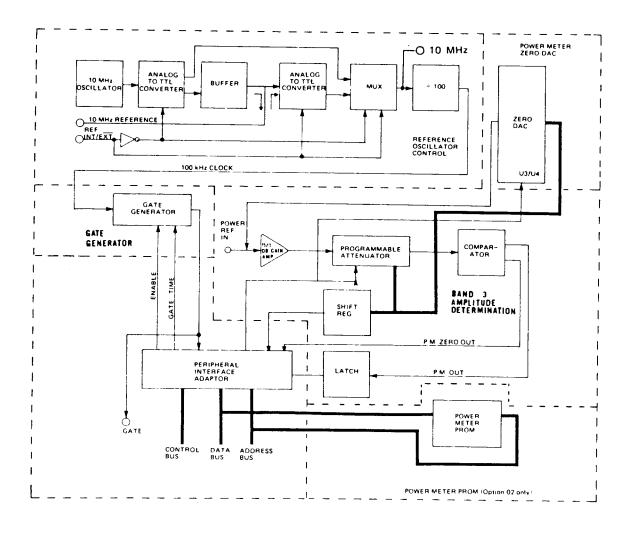
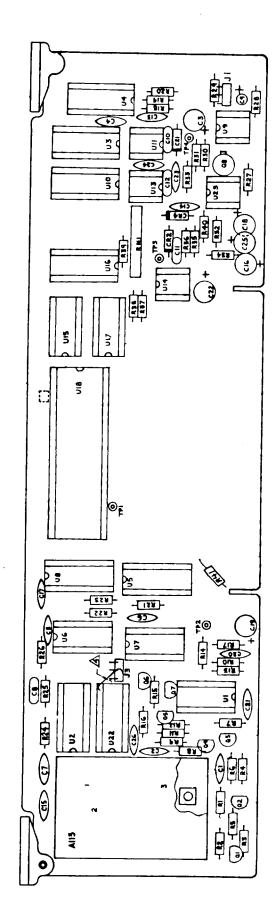


Figure 107-2. Gate Generator Block Diagram

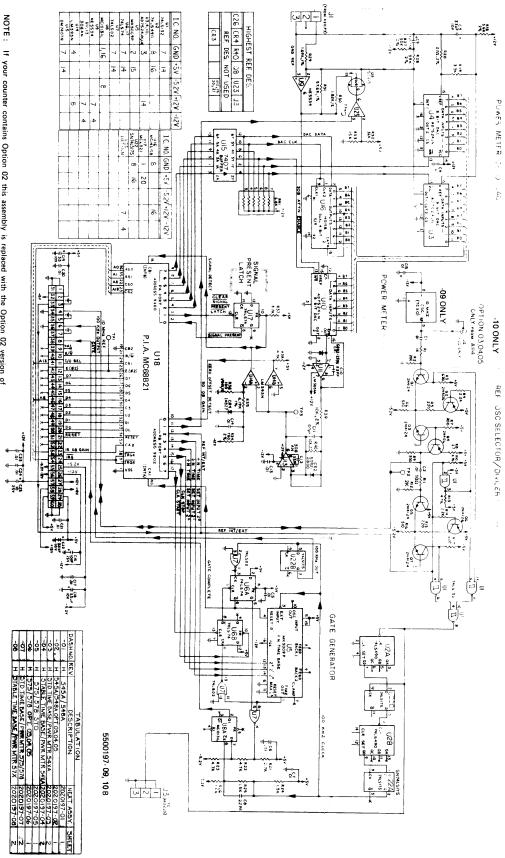
A107 GATE GENERATOR


REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A107	Gate Generator Assy -05/06 A113 Crystal Osc	2020197 2030002	1 Ref	EIP	34257
C1	Cer, .01μF, 20%, 100V	2150003	15	TG - S10	72982
C2 C3 C4 thru	C1 Tant, 33μF, 20%, 10V	2300015	4	TAPA33M10	14433
C7 C8	C1 Mica, 22pF, NOM, 5%, 500V, SAT	2269999	1		
C9	Tant, 1μF, 20%, 35V	2300008 2260021	1 2	TAPA 1.0M35 CD10ED330J03	14433 72136
C10 C11 C12	Mica, 33pF, 5%, 500V Mica, 100pF, 5%, 500V C10	2260021	1	CD10FD101J03	72136
C13 thru					
C15 C16 C17 C18 C19	C1 Tant, 10μF, 20%, 25V C1 C3 C3	2300029	2	DF106M25S	NEC
C20 C21 C22 C23 C24 C25 C26	C1 C1 C3 C1 C1 C1 C16				
CR1	Hot Carrier	2710004	1 1	5082-2835 5002-2800	28480 HP
CR2 CR3 CR4	Hot Carrier Not Used Zener, 6.2V	2710006 2700827	1	IN827	'''
R1	Comp, 10 ohm, 5%, 1/4W	4010100	2	RC07GF 100J	81349
R2	Comp, 1K, 5%, 1/4W	4010102	2	RC07GF 102J	81349
R3	Comp, 620, 5%, 1/4W Comp, 2.2K, 5%, 1/4W	4010621	2 3	RC07GF621-J RC07GF222J	81349 81349
R4 R5	Comp, 220, 5%, 1/4W	4010221	2	RC07GF221J	81349
R6	Comp, 510, 5%, 1/4W	4010511	2	RC07GF511J	81349
R7	Comp, 200, 5%, 1/4W	4010201	1	RC07GF201J	81349
R8	Comp, 27, 5%, 1/4W	4010270	1	RC07GF270J	81349
R9 R10 R11	Comp, 300, 5%, 1/4W Comp, 4.7K, 5%, 1/4W R1	4010301 4010472	6	RC07GF301J RC07GF472J	81349 81349
R12 R13 R14 R15	Comp, 2K, 5%, 1/4 R10 R4 R5	4010202	2	RC07GF202J	81349
R16 R17	R6 R3				
R18	Met Ox, 5.6K, 2%, 1/4W	4130562	1	C4/2%/5.6K	24546
R19	Met Ox, 3.3K, 2%, 1/4W	4130332		C4/2%/3.3K	24546
R20	Met Ox, 27, 2%, 1/4W	4130270	1	04/1%/27	24546
R21	Comp, 2.7K, 5%, 1/4W	4010272	1	RC07GF272J	81349
R22 R23	R10				Ì
R24	R2				

A107 GATE GENERATOR continued

2020197-09 B

		γ-			
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41	R12 R4 Met Ox, 30K, 2%, 1/4W Met Ox, 39K, 2%, 1/4W Prec, 1.69K, 1%, 1/10W Prec, 1.82K, 1%, 1/10W Prec, 57.6K, 1%, 1/10W Comp, 36K, 5%, 1/4W Comp, 15K, 5%, 1/4W Met Ox, 750, 2%, 1/4W Prec, 6.19K, 1%, 1/8W Prec, 100, 1%, 1/8W R10 R10 Met Ox, 10K, 2%, 1/4W R39 Comp, 10K, 5%, 1/4W (option only) 5 x 10 K, 0.3W, 2%	4130303 4130393 4051691 4051821 4055762 4010363 4010153 4130751 4056191 4051000 4130103 4010103 4170005	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C4/2%/30K C4/2%/39K RN55C1691F RN55C51821F RN55C5762F RC07GF363F RC07GF153F C4/2%/750 RN55C6191F RN55C1000F C4/02/10K RC07GF103J 4608X-101-682	24546 24546 81349 81349 81349 81349 24546 81349 24546 81349
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8	NPN - General Purpose PNP - General Purpose Q1 Q2 Q1 Q2 Q1 Q2 Q1 DMOS, FET SW	4704124 4704126 4710031	1	2N4124 2N4126 SD215	18324
U1 U2 U3 U4	Quad Schmitt NAND Dual Decade Counter 8 Bit DAC U3	3084132 3084490 3057524	1 1 3	SN74LS132 SN74LS490N AD7524JN	01295 01295
U5 U6 U7 U8 U9	Digital P Chan. MOS Divider D Type Pos Flip-flop Quad 21NP NOR Gate Digital Dal D Flip-flop Dual Low Noise Op Amp	3035009 3087474 3087402 3110131 3045534	1 2 1 1	MK5009P SN74LS74N SN74LS02N MC10131L NE5534N	01295 01295 04713
U10 U11 U12 U13	8 Bit DAC Buff Op Amplifier U10 (Option 02 only) U11	3057524 3040308	2	AD7524LN LM308AN	27014
U14 U15 U16 U17	Comparator Hex Buffer/Driver Dual 4 Bit Static S/R U6	3050393 3007407 3034015	1 1 1	LM393N DM7407N MC14015B	27014 27014 04713
U18 U19 U20 U21	Periph. Interface Adaptor Not Used Not Used Not Used	3086821	1	MC68B21P	04713
U22 U23 TP1 thru	Quad Dual Flip-flop Op Amp/Lin	3084175 3040741	1 1	SN74LS175 LM741CN	01295 27014
TP4	.040 D Pin, Gold	2620032	4	460-2970-02-03	71279


PAGE LEFT BLANK INTENTIONALLY

2020197-09 B

NOTE: If the counter contains Option 02 this board is replaced with 2020197-03/04. Refer to Section 10, Option 02 for the 03/04 version of this assembly.

Figure 107-3. Gate Generator Component Locator

E: If your counter contains Option 02 this assembly is replaced with the Option 02 version of the Gate Generator part number 5500197-03/04. See Section 10 for Option 02.

Figure 107-4. Gate Generator Schematic

The Converter Control performs two major functions. One of the functions is to provide a precise yig tuning current which is controlled by the microprocessor via P.I.A. U4. The other function is to phase lock the VCO in the microwave converter to a selected harmonic of a 50 kHz reference signal to provide a synthesized L.O. The converter control also permits the microprocessor to control the L.O. power amplifier and provides the microprocessor input for the I. F. threshold signal.

YIG FREQUENCY CONTROL DAC and DRIVERS

The yig tuning current is supplied by the yig driver (U3, Q1, Q2, & Q3) which is controlled by the DAC. The DAC is composed of a 12 bit monolithic DAC (U2), summing amplifier (U1) and resistors to provide a total resolution of 14 bits. PA ports 0 and 1 of the P.I.A. (U4) are used to drive the 2 least significant bits of the DAC directly. A change in the least significant bit of the DAC corresponds to a yig frequency change of 2 MHz. A voltage analog of yig current appears across R25 and is compared to the DAC output at the summing junction of U3, with resistors R1 and R19.

The slope of yig current vs DAC voltage is compensated with corrections through software.

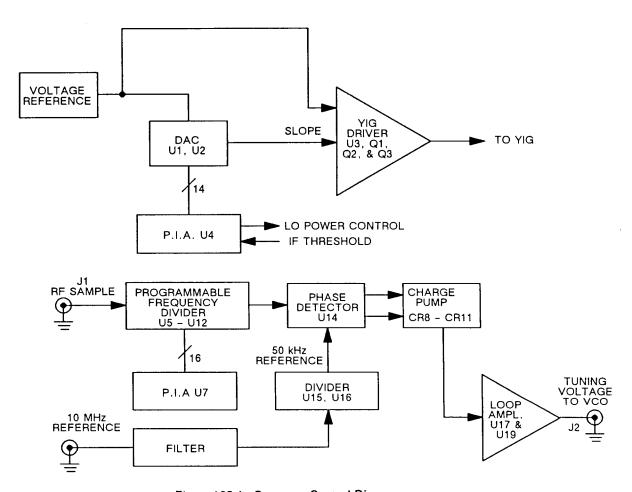


Figure 108-1. Converter Control Diagram

VCO CONTROL

The VCO control, together with the VCO, form a phase lock loop frequency synthesizer. The frequency range over which the synthesizer is used is from 370 MHz to 500 MHz.

An output of the VCO (via a buffer amplifier Q2 on the Band 2 converter board) is applied to the program-mable frequency divider (U5-U13). The programmable frequency divider is programmed by the micro-processor via P.I.A. U7. The output of the programmable frequency divider is compared to the 50 kHz reference (derived from a 10 MHz clock from the gate generator board) in the phase detector U14. A phase difference between the divided down VCO and the 50 kHz reference will result in an output from the phase detector. The phase detector has two output ports, a pump-up port and a pump-down port. Pump-down is U14, pin 2. Pump-down is normally high and goes low to reduce the VCO frequency. Pump-up is U18, pin 3. Pump-up is normally low and goes high to increase the VCO frequency. The outputs of the phase detector go to the charge pump, which converts them to a single tri-state output. The charge pump output is open with no pump command, sources current with pump-up, and sinks current with pump-down. The output of the charge pump is connected to the input of the loop amplifier U19 and U17. The loop amplifier provides the proper gain and filtering to achieve the desired loop response. The output of the loop amplifier is the VCO tuning voltage.

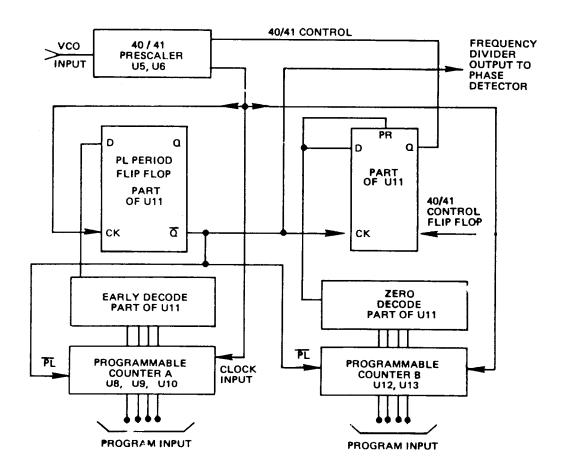


Figure 108-2. Programmable Frequency Divider Diagram

PROGRAMMABLE FREQUENCY DIVIDER

The programmable frequency divider uses a two modulus (divide number) prescaler (U5, U6) and two programmable counters (A & B). The prescaler is used to divide the VCO frequency down to a lower frequency which can be handled by low power Schottky TTL programmable counters. The two modulus prescaler permits prescaling without loss of resolution. At the start of the programmable frequency divider cycle, the prescaler is set to divide by the larger modulus (41), and both programmable counters have been The programmable counters each from the PIA. loaded with their respective program numbers decrement 1 count for each output pulse from the prescaler. When programmable counter B (U12, U13) reaches the count of zero the 40/41 control flip-flop (part of U11) changes state and causes the prescaler to divide by the lower modulus (40). When programmable counter A reaches the count of 2 the D input of the PL period flip-flop (part of U11) goes high, so that on the count of 1 the flip-flop changes state, which causes both programmable counters to be reloaded with their respective program numbers and the 40/41 control flip-flop to reset (prescaler in ÷ 41 state). The very next count causes the PL period flip-flop to reset, starting the programmable frequency divider cycle over again. The equation for the divide ratio of the programmable frequency divider N_d is:

$$N_d = 40 (N_{counter} A) + N_{counter} B$$

with the condition that:

N counter B must not exceed N counter A

The weighting of the command bits is:

U9 P ₁ – 400MHz	U10 $P_1 - 4MHz$
U9 $P_0 = 200 MHz$	U10 $P_0 - 2MHz$
U8 $P_3 - 160 MHz$	U13 P ₃ - 1.6MHz
U8 $P_2 - 80MHz$	U13 $P_2 - 0.8 MHz$
U8 P ₁ - 40MHz	U13 $P_1 = 0.4 MHz$
U8 $P_0 - 20MHz$	U13 $P_0 - 0.2 MHz$
$U10P_3 - 16MHz$	U13 $P_1 - 100KHz$
U10 P ₂ - 8 MHz	U13 $P_0 = 50KHz$

PAGE LEFT BLANK INTENTIONALLY

A108 CONVERTER CONTROL

REF DES	DESCRIPTION	EIP NO.	PER ASSY	TYP MFG NO.	TYP FSCM NO.
A108	CONVERTER CONTROL ASSY	2020200-02	1	EIP	34257
C1 C2 C3 C4 C5	Disc, $.005\mu$ F, 20% , $100V$ Disc, $.01\mu$ F, 20% , $100V$ Cer, $.047\mu$ F, 10% , $50V$ Tant, 1μ F, 10% , $35V$ C4	2150008 2150003 2150090 2300008	1 14 1 3	TG-D50 TG-S10 6123X7R473KA50K TAPA 1.0M35	56289 56289 13011 14433
C6 C7	C2 Cer, 001 μF, 20%, 100V	2150001	4	5GA-D10	56289
C8 C9 C10 C11 C12 C13 thru	C4 Tant, 33μF, 10%, 10V C7 C7 C7	2300015	2	TAPA 33M10	14433
C17 C18 C19 C20 C21 C22 thru	C2 Tant, 10pF, 20%, 25V C18 C9 C18	2300029	4	DF106M25S	72136
C24 C25 C26 C27 C28	C2 Cer, 560pF, 5%, 100V Tant, .47μF, 20%, 35V Cer .022 μF, 15%, 50V C18	2150029 2300005 2350027-00	2 1 1	SR211A561JAA TAPA-47M35 2130X7R050R223K	14158 14433 26654
C29 C30 C31 C32 C33	C2 Cer, 330pF, 10%, 100V Tant, 2.2μF, 50%, 16V Mica, 82pF, 5%, 500V C2	2150030 2300012 2260032	1 1 2	SR211A331KAA TAPA 2-2M16 CD10ED820J03	14158 14433 72136
C34 C35 C36 C37 C38	Mica, 430-470 pF, 5%, 500V, SAT Mica, 470 pF, 5%, 500V Mica, S.A.T. Cer, .1μF, 10%, 50V C2	2259999 2250018 2269999 2150028	1 1 1 1	DM-15-471J 30pF, NOM. RC50104KB	72136 Murata
C39 C40 C41 C42	Cer, 2200pF, 5%, 100V C25 C2 C2 C32	2150026	1	SR211A22JAA	14158
CR1 CR2 CR3 CR4 CR5 CR6	Hot Carrier Zener, 56V General Purpose Zener, 6.2V Power Rectifier	2710004-00 2704758-00 2704148 2700827 2704001	1 1 14 1 1	5082-2835 IN4757 IN4148 IN827 IN4001	28480 07263 07263 07263 07263
CR18	CR3				
L1 L2 L3 L4	Inductor, 100μΗ Inductor, 1μΗ Inductor, 4700μΗ L3	3520007 3510018 3510017	1 1 2	1537-76 1537-12 1641-475	99800 99800 99800
Q1 Q2 Q3	PNP PNP Amplifier NPN General Purpose	4710009 4710018 4704124	1 1 1	MJE350 MPSL51 2N4124	04713 04713 04713

A108 CONVERTER CONTROL

2020200-04 B

					20200- 04 B
REF		515	UNITS		TYP
	DESCRIPTION	EIP	PER	TVD MEG NO	1
DES	DESCRIPTION	NO.		TYP MFG NO.	FSCM
			ASSY		NO.
R1	Res, 8.00K, 1/10W, 1%	4100000			
R2	Comp, 4.7K, 5%, 1/4W	4120022	1	VAR-1/10C-6-1%-723K	ACI
R3		4010472	1	RC07GF472J	81349
	Comp, 1K, 5%, 1/4W	4010102	6	RN55C4992F	81349
R4	Not Used				
R5	Met Ox, 390 ohm, 2%, 1/4W	4130391	2	C4/2%/390	24546
R6	Not Used			, , , , , , , , , , , , , , , , , , , ,	1 - 10 10
R7	Not Used			•	
R8	R3				
R9	Not Used				
R10	Not Used				
R11	Not Used				
R12	Not Used				
R13	R5	İ		-	
R14	Comp, 750, 5% 1/4W	4010751	1	DC07CE7E41	04040
R15	Comp, 820K, 5%, 1/4W	4010731	1	RC07GF751J	81349
R16	R3	4010624	J	RC07GF824J	81349
R17	Met Ox, 1.6K, 2%, 1/4W	4420400		0.4.100/.44.044	1
R18	Comp, 1.60K, 5%, 1/4W	4130162	1	C4/2%/1.6K	24546
R19	Prog. 2.01K, 10/, 1/10M	4010164	1	RC07GF164J	81349
R20	Prec, 3.01K, 1%, 1/10W	4120020	1	VAR-1/10C-6-1%	ACI
	Comp, 10K, 5%, 1/4W	4010103	3	RC07GF103J	81349
R21	Comp, 82K, 5%, 1/4W	4010823	1	RC07GF823J	81349
R22	R20	1			
R23	R20				
R24	R3				[
R25	Wire Wound 5, 1%, 7W	4110003	1	T7 (10 PPM)	12463
R26	Comp, 2.7K, 5%, 1/4W	4010272	1	RC07GF272J	81349
R27	Comp, 51, 5%, 1/4W	4010510	2	RC07GF510J	81349
R28	Comp, 390, 5%, 1/4W	4010391	3	RC07GF391J	
R29	R28	10.0001		1100701 3913	81349
R30	R28				į l
R31	R3				
R32	Comp, 100, 5%, 1/4W	4010101	,	D0070E4041	
R33	R3	4010101	3	RC07GF101J	81349
R34	Comp, 2.4K, 5%, 1/4W	4010242		2007050404	
R35	R32	4010242	1	RC07GF242J	81349
R36	Comp, 220K, 5%, 1/4W	4040004	_		
R37	R32	4010224	1	RC07GF224J	81349
R38	Comp, 4.3K, 5%, 1/4W NOM S.A.T.	4010999	1	SAT	81349
R39	Comp, 2K, 5%, 1/4W	4010202	1	RC07GF202J	81349
R40	R27		İ		
R41	Comp, 1.5M, 5%, 1/4W	4010155	1	RC07GF155J	81349
R42	Comp, 300, 5%, 1/4W	4010301	1	RC07GF301J	81349
R43	Comp, 8.2K, 5%, 1/4W	4010822	1	RC07GF822J	81349
R44	Comp, 51K, 5%, 1/4W	4010513	2	RC07GF513J	81349
R45	Comp, 5.1K, 5%, 1/4W	4010512	1	RC07GF512J	
R46	R44		.		81349
R47	Comp, 3.3K, 5%, 1/4W	4010332	1	RC07GF332J	1 01010
	r r r r p - r 	10.0002	'	1100701 3323	81349
U1	Prec, J-FET Op Amp	3041016	1	OP16FJ	0000
U2	12 Bit DAC	3050012	i	H57541-J	06665
U3	Op Amp, Lin.	3040741	1	H5/541-J LM741CN	0000X
U4	Peripheral Interface Adaptor	3086821	2		27014
U5	Two-Mod Prescaler	3112013-02		MC68B21P	04713
U6	Digital Dual "D" Flip-flop	3110131	1	MC12013L	04713
U7	U4	3110131	1	MC10131L	04713
U8 thru	~ .	1			
U10	UP/DOWN Counter	2004100		D44741 04001	
3.0	OF A DOTTIN COUNTER	3084192	4	DM74LS192N	27014
Ì					
]
			i		} 1
				······································	·

A108 CONVERTER CONTROL

2020200-04 B

	ON THE CONTINUE				1
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
U11 U12	Counter Control Logic UP/DOWN Counter	3112014 3084193	1 1	MC12014P DM74LS193N	04713 27014
U11 U12 U13 U14 U15 U16 U17 U18 U19	Counter Control Logic UP/DOWN Counter U8 Phase Frequency Detector Quad Dual Flip-flop Decade Counter J-FET Op Amp Quad 2 INP NAND U17		1	MC12014P DM74LS193N MC4044P SN74LS175 SN74LS490N TL071CP DM74LS00	04713 27014 04713 01295 01295 01295 27014

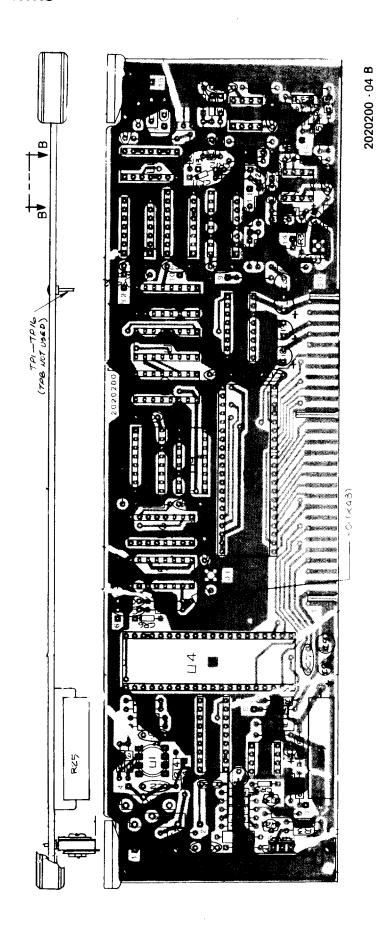


Figure 108-3. Converter Control Component Locator

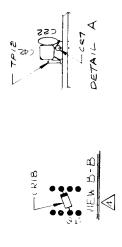
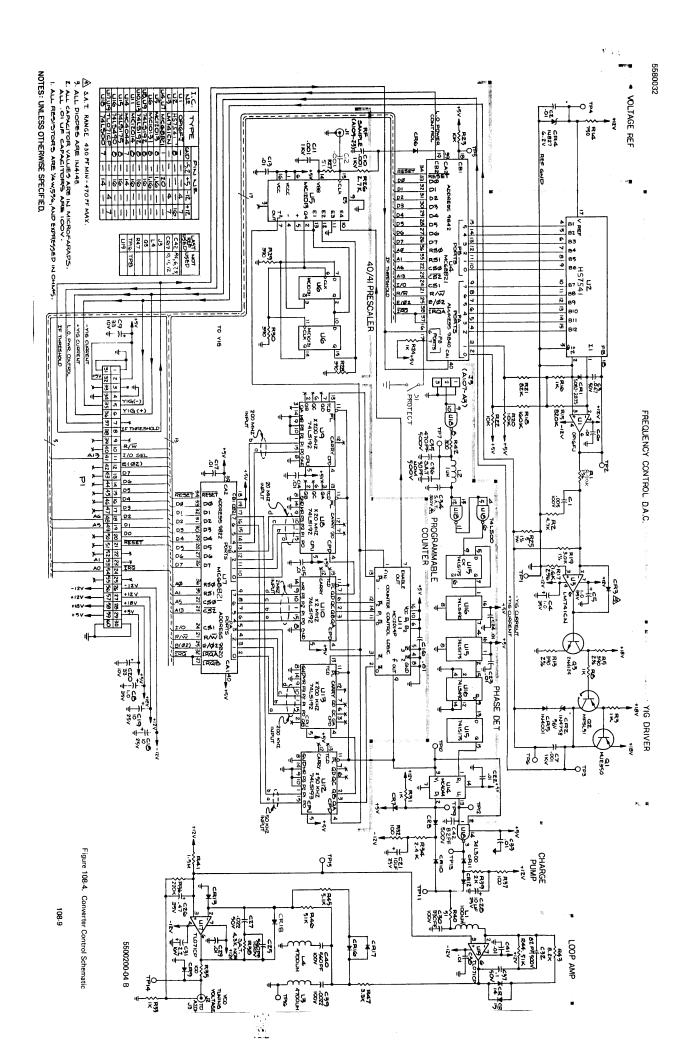



Figure 108-4, Schematic Diagram, Converter Control, is changed from Rev. K to Rev. L, but this does not change any part of the drawing shown in this figure.

A109 BAND 2 CONVERTER (2020139)

The Band 2 Converter accepts Band 1 and Band 2 RF signals from the front panel, and local oscillator (LO) signal from the Band 3 Converter (A203). The appropriate signal is selected and processed to produce an IF signal between 10 Hz and 200 MHz. The IF signal output is sent to the Count Chain board (A106), and lock information is routed through the PIA (peripheral interface adapter) U2 to the Microprocessor (A105).

IMPEDANCE CONVERTER

Band 1 input from the front panel enters the converter at J6 and is terminated by R75. The signal is coupled to the input of a field effect transistor (FET) amplifier (Q15) through an RC network (R73, C42). Two limiter diodes (CR4, CR5) protect the FET against large input signals. The FET is a source follower with slightly less than unity gain. The FET drives a buffer amplifier (Q14) which has enough gain to increase the impedance converter overall gain to near unity. A decoupling capacitor (C39) controls the amplifiers low frequency cutoff, and C41 provides high frequency peaking to keep the gain flat to frequencies above 100 MHz.

SIGNAL SELECT

The output of the impedance converter circuit drives one input of the signal select circuitry. Signal selection is made by enabling one of three differential amplifiers, U4A, U4B, or U5A. When Band 1 is selected, a logic high signal on the PIA (U2 pin 2) turns on Q16. Q16 biases on the current source in U4A. This current source generates an 11mAcurrent which is split between the two differential amplifier transistors in U4A. The currents from pins 5 and 6 flow through matched collector loads (R94, L7/R95, L8). R94 and R95 are equal, and are selected for the proper low frequency gain during board alignment. Inductors L7 and L8 provide peaking to give an approximate flat gain through 200MHz.

The next stage is a differential amplifier similar to U4A, but it is driven differentially. To generate a single ended output signal, one output of U5B (pin 12) is passed through a current mirror (Q18). The output of the current mirror is then added to the second output of U5B (pin 11) at J5. The load for this stage is a 51 ohm resistor located on the A106 Count Chain board in order to terminate the coax for RF signals. In the quiescent state, the current from Q18 equals the collector current of the differential amplifier U5B, and the output current is zero. When a signal is applied, the current will be unbalanced to generate a signal at the load resistor. To provide frequency compensation of the current mirror, an RC network (R108, C54) is connected between the emitter of Q18 and ground.

BAND 1 LOCK DETECTOR

The output signal at J5 is coupled to detector CR12. Amplifier U6 is a threshold comparator that will produce a logic low signal when the IF output from J5 is more than -6dBm. The output of U6 goes through a resistor divider network to generate a 5V TTL logic signal for the PIA. R90 provides about 1 dB of positive feedback at threshold level to prevent erratic output from the comparator.

ISOLATION AMPLIFIER

The Band 2 input signal enters on J4. This RF signal is terminated in 50 ohms by the combination of R1 and the input impedance of the amplifier. The input signal level is detected by CR1, filtered by C3, and applied to one input of the Band 2 lock detector (U1).

The isolation amplifier is a common base amplifier with a gain of -10 dB. An input signal range of +10 to -20dBm is translated to a 0 to -30dBm range into the mixer so the mixer will be in its linear range for all signal input levels. The amplifier peaks slightly near 1 GHz to overcome an increase in mixer conversion loss at these frequencies.

MIXER OPERATION

The local oscillator (LO) is applied to the IF terminal and the IF is removed from the LO terminal. This swap allows the mixer (MX1) to be unbalanced and act as a low loss attenuator for signals between 10MHz and 200MHz where no mixing is necessary. The mixer has a nominal 400MHz LO for signals between 200MHz and 600MHz; and has a nominal 800MHz LO for signals between 600MHz and 1GHz. A 980MHz LO allows operation with input signals to 1160MHz.

IF AMPLIFIER

The output of the mixer drives an IF amplifier through a 7 section, 200MHz low-pass filter. The IF amplifier is a "feedback pair" amplifier whose gain is stabilized by feedback, to be equal to 24dB. Inductor L6 is used to extend the high frequency response to 200MHz. The 1 pF capacitor (C26) between R34 and R35 is a low pass filter to reduce the 1200 to 1500 MHz LO harmonics that reach the IF amplifier.

BAND 2 LOCK DETECTOR

The IF amplifier output goes to the signal select circuit and to the Band 2 Lock Detector. The Band 2 Lock Detector has a voltage proportional to the IF level on the positive input, and a voltage proportional to the RF signal on the negative input. The conversion gain from RF input to IF amplifier output is a +6dB for all valid signals, and less than -6dB for all spurious signals. The output of U1 is positive only when a valid IF signal is present. A small offset is added by R12 and R13 to guarantee a non lock condition when no signal is present. Resistor R9 provides about 1dB of positive feedback to prevent erratic output from noise at the point of threshold.

LO BUFFER

The VCO signal from the Band 3 Converter (A201A, J2) enters on J1. The signal goes through a 6 dB attenuator (R111, R112, R114), and a low pass filter (L1, C63, C64) to attenuate high order harmonics, and is terminated by a 51 ohm resistor (R16). Two high input impedance signal splitters (Q2, Q3) get their input signals from R16. Q2 and Q3 operate on the same basic principal. One output is taken from the emitter (acting as an emitter follower) that provides unity gain for the input signal. The AC terminating impedance on the emitter is adjusted to be 50 ohms so the amplifier will act as a unity gain amplifier for the 50 ohm load that terminates the collector when a coax cable is connected. Q2 has an additional transformer (T1) in its collector lead to increase the signal output to J3 by about 4 dB.

DIVIDE-BY-TWO

The emitter output of Q3 drives the input of a divide-by-two IC (U3). The impedance is held at 50 ohms by two terminating/biasing resistors (R61, R62). The resistors keep the input bias to U3 below the emitter-coupled logic (ECL) low level (approx. -2.0V). The microprocessor enables self-test by putting a low level signal on pin 5 of the PIA (U2). This turns on Q13, and raises the voltage at U3 pin 7 to the center of an ECL signal (approx. -1.2V). This allows U3 to divide the input signal by two. The output of U3 goes to the signal select circuits.

LO SELECT

The signal from the emitter of Q2 drives the LO select circuitry. The LO provides one (of three) signals to the mixer (MX1). In Band 2A a bias current is generated to unbalance the mixer and allow signals below 190MHz to pass. In Band 2B a 370MHz or 425MHz LO signal is generated that will mix with signals of 200 to 600MHz, and provide the 10 to 200MHz IF signal desired. In Band 2C a 750MHz, 850MHz or 980MHz LO signal is generated to mix with input signals between 600MHz and 1160MHz to provide the desired IF signal.

In Band 2A, the 3mAcurrent to bias mixer MX1 is generated when Q12 is turned on by the PIA, to apply +12V to MX1 through R57. This will allow signals to pass that are less than the cutoff frequency of the low pass filter (200MHz). The LO signal to mixer MX2 from Q2 is not allowed to pass MX2 because of the inherent balance of the mixer. No signal can enter pin 2 of MX2 because Q7 has been saturated, removing bias from buffer Q5, and shunting any RF signals to ground.

When Band 2B is selected, Q12 is turned off thus balancing mixer MX1; Q6 is turned on to unbalance mixer MX2. With MX2 unbalanced, the LO signal from Q2 can pass through MX2 and be amplified by Q10 and Q11, and be applied to mixer MX1.

When Band 2C is selected both Q6 and Q12 are off, and both mixers are balanced. In this mode Q7 is shut off and an LO signal is applied to pin 1 and 2 of MX2. The sum output of MX2 is selected by a DC blocking capacitor (C31). This sum (that is, two times the incoming LO frequency) is amplified by Q10 and Q11 and applied to MX1.

The Q10 and Q11 amplifier is a series shunt pair. Q10 applies most of the RF input signal across the emitter resistor R47. This determines the transistor emitter current, which will be the collector current if the output is terminated in a low impedance. Q11 is used as a current-to-voltage converter. The output voltage of this converter is the product of the input current times the feedback resistor (R51). Since the input of this stage is a summing junction, it appears very close to zero ohms to the previous stage, Q10. The voltage gain of the two transistors can be approximated by R51/R47, which is about 3 or 10dB. Since the gain required at 800MHz is slightly greater than required at 400MHz, a low pass matching network (consisting of L2 and C20) peaks the output signal current to MX1 at 800 MHz. The remaining components around Q10 and Q11 are used to bias the transistors. Shunt biasing is used to provide collector bias voltages of 3.4V for Q10, and 4.7V for Q11.

OPTION SELECTION

Provision has been made on this assembly for a set of jumpers that will let the microprocessor know when it has the components required for a 578B(26.5 GHz) counter, and if it has an extended frequency option (Option 06). These jumpers are read by the microprocessor when the counter is turned on, and it selects micro code which is applicable only when those options are available. A jumper from E1 to E3 (from pins 8 and 9 on the PIA U2) indicates that this is a 578B counter.

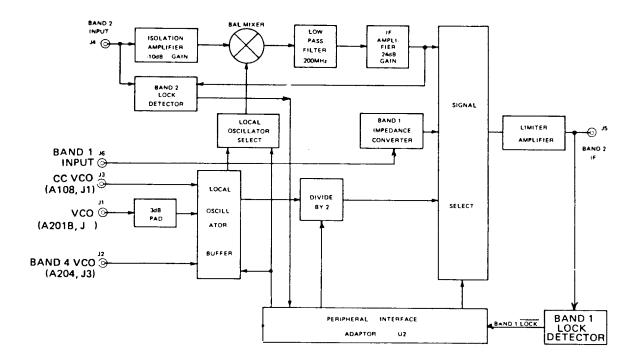


Figure 109-1. Band 2 Converter Block Diagram

7,100 57,115 2 0011 2111 211								
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.			
A109	Band 2 Converter Assy	2020139-03	1	EIP	34257			
C1	Cer, .01μF, 10%, 100V	Cer, .01μF, 10%, 100V 2150014 9 6123X7R103KA100						
C2 C3	C1 Cer, .001µF 10%, 100V	2150015	11	6183X7R102KA100	26654			
C4 thru C6 C7 C8 C9 C10 C11 C12 C13 C14 C15	C1 Mica, 100pF, 5%, 500V Disc, .001μF, 20%, 1KV Disc, .01μF, 20%, 100V C8 C8 C7 C8 C7	2260034 2150001 2150003	3 8 11	FD101J03 SGA - D10 TG - S10	72136 56289 56289			
thru C18 C19 C20 C21 C22 C23	C3 C8 Mica, 1pF, 100%, 500V Mica, 18pF, 5%, 500V, NOM - S.A.T. Mica, 33pF, 5%, 500V, NOM - S.A.T. C22	2260005 2260999 2260999	2 1 2	CD010C03 (2260015) CD180J03 (2260021) ED330J03	56289 56289 56289			
C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34	Mica, 27pF, 5%, 500V, NOM - S. A. T C1 C20 Not Used C1 C9 C1 C3 C3	2260999	1	CD270J03	56289			
thru C36 C37	C3 C9							
C38 C39	C3 Tant, 100µF, 20%, 6.3V	2300024	1	TAG20 - 47/6.3 - 50	14433			
C40 C41 C42 C43 C44 C45 C46 C47	C9 Mica, 22ρF, 5%, 500V Mica, 47pF, 5%, 500V Tant, 33μF,10%, 10V C9 C43 C8	2660017 2260004 2300015	1 1 6	ED220J03 DM10 - 470J TAG20 - 33/10 - 50	72136 72136 14433			
thru C49 C50 C51 C52 C53	C9 Tant, 10μF, 20%, 25V C43 C9 C9	2300029	3	TAG20 - 10/25	14433			
C54 C55 C56 C57	Mica, 18pF, 5%, 500V C8 C8 C50	2260015	1	CD180J03	56289			
L	<u> </u>	1	i	<u> </u>	L			

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
C58 C59 C60 C61 C62 C63 C64	C43 C9 C43 C50 C43 Mica, 8pF, 5%, 500V C63	2260011	2	CD080J03	56289
CR1 CR2	Mix UHF Not Used	2710038	3	ND4991	00005
CR3 CR4 CR5 CR6	CR1 General Purpose CR4	2704148	3	1N4148	07263
thru CR10 CR11 CR12	Not Used CR4 CR1				
L1 thru L5 L6	Part of Board Inductor, 0.47 µH	3510006	1	DD - 0.47	99800
MX1 MX2	Balanced Mixer MX1	2030016	2	TFM -2	
Q1 Q2	NPN, RF	4710030	8	BFR-90	04713
Q3 Q4 Q5	Q1 PNP, General Purpose Q1	4704124	1	2N4124	04713
Q6 Q7 Q8	PPNP, General Purpose Q1 Q1	4704126	7	2N4126	04313
Q9 Q10 Q11 Q12	Q1 Q1 NPN, RF, graded Q1 Q6	4710030-02	1	BFR90	04713
Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20	Q6 NPN, RF NN-Channel, JFET Q6 Q6 Q14 Q6 Q6	5280047 4704416	2	2N4261 2N4416	01295 04713
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13	Comp, 150, 5%, 1/8 W Res, MF, 75.0. 1%, 1/8W Res, 1.1K, 2%, 1/4W Res, 820, 2%m 1/4W Comp, 33, 5%, 1/8 W Comp, 51, 5%, 1/8 W Comp, 10K, 5%, 1/4 W Met Ox, 8.2K, 2%, 1/4 W Met Ox, 30K, 2%, 1/4 W Met Ox, 43K, 2%, 1/4 W Comp, 43K, 5%, 1/4 W Met Ox, 5.A.T., Nom, 15K MF, 12.1, 1%, 1/8W	4000151 4067509 4130112 4130820 4000330 4000510 4010103 4130822 4130303 4130433 4010433 4130999 4061219	1 1 4 1 1 3 2 1 2 1 2 1	RC05GF151J RN55D7509F C4/2%/10 C4/2%/820 RC05GF330J RC05GF510J RC07GF103J C4/2%/8.2K C4/2%/30K C4/2%/43K RC07GF433J C4/2%/15K RN55D1219F	81349 24546 24546 81349 81349 81349 24546 24546 24546 24546

A109 BAND 2 CONVERTER, continued

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
R14	Comp, 36, 5%, 1/4 W	4010360	1	RC07GF36J	81349
R15	Comp. 11, 5%, 1/4 W	4010110	2	RC07GF110J	81349
R16	MF, 51.1, 1%, 1/8W	4065119	2	RN55D51R1F	24546
R17	Comp, 1K, 5%, 1/4 W	4010102	4	RC07GF102J	81349
R18	R4				
R19	R15				
R20	Res, CC SAT, 1/4W, 5%	4010999	1	D007CF0011	81349
R21	Comp, 220, 5%, 1/4 W	4010221	2	RC07GF221J	81349
R22	Comp, 20K, 5%, 1/4 W	4010203	1	RC07GF203J	61349
R23	Res, CC 820, 1/4W, 5%	4010821	2	RC07GF821J RC07GF100J	81349
R24	Comp, 10, 5%, 1/8 W	4010100	11 2	C4/2%/750	24546
R25	Met Ox, 750, 2%, 1/4 W	4010113	3	RC07GF113J	81349
R26	Comp, 11k, 5%, 1/4 W Met Ox, 4.7K, 2%, 1/4 W	4130472	1	C4/2%/4.7K	24546
R27 R28	MF, 33.2,1%, 1/8W	4063329	2	RN55D3329F	24546
R29	Comp. 4./K, 5%, 1/4 W	4010472	2	RC07GF472J	81349
R30	R26	1010172	_		1
R31	Comp. 8.2K, 5%, 1/4 W	4010822	2	RC07GF822J	81349
R32	R7				
R33	R7				1
R34	MF, 27.4, 1%, 1/8W	4062749	1	RN55D2749F	24546
R35	MF, 24.3, 1%, 1/8W	4062439	1	RN55D24R3F	24546
R36	R24				04040
R37	Comp, 10, 5%, 1/8 W	4000100	1	RC05GF100J	81349
R38	R17				
R39	R4				
R40	R4				1
R41	R24				
R42	R16				
R43 R44	R24 Comp, 910, 5%, 1/4 W	4010911	1	RC07GF911J	81349
R45	Comp, 3.9K, 5%, 1/4 W	4010392	3	RC07GF392J	81349
R46	Comp, 27K, 5%, 1/4 W	4010273	1	RC07GF273J	81349
R47	R28		1		
R48	Comp, 3.3K, 5%, 1/4 W	4010332	1	RC07GF332J	81349
R49	Comp, 390, 5%, 1/4 W	4010391	1	RC07GF391J	81349
R50	Comp, 13K, 5%, 1/4 W	4010133	1	RC07GF133J	81349
R51	MF, 121, 1%, 1/8W	4061210	1	RN55D1210F	24546
R52	R24				
R53	R31				
R54	R26				
R55	R25				
R56	R24 Met Ox. 4.3K NOM. SAT	4130999	1	C4/2%/4.3K	24546
R57 R58	R17	4130888	'	GT/ 2/0/ T. SIN	47570
R59	R45				
R60	R12 300 or 560 NOM SAT	4130999			
R61	MF, 82.5, 1%, 1/8W	4068259	1	RN55D82R5F	24546
R62	MF, 130, 1%,1/8W	4061300	2	C4/1%/130	24546
R63	Comp, 510, 5%, 1/4 W	4010511	1	RC07GF511J	81349
R64	Comp, 51, 5%, 1/4 W	4010510	2	RC07GF510J	81349
R65	Comp, 200, 5%, 1/4 W	4010201	1	RC07GF201J	81349
R66	Comp, 160K, 5%, 1/4 W	4010164	1	RC07GF160K	81349
R67	Met Ox, 1.8K, 2%, 1/4 W	4130182	1	C4/2%/1.8K	24546
R68	R24	4120511		C4/20//F10	24540
R69	Met Ox, 510, 2%, 1/4 W	4130511	1	C4/2%/510	24546
R70 R71	Met Ox, S.A.T. Nom 1.2K R29	4130999	'	C4/2%/1.2K	24546
R72	R24	ļ			
	''	İ			
L	1		<u> </u>		<u> </u>

	•				2020139-05,0
255			UNITS	·- · · · · · · · · · · · · · · · · · ·	TYP
REF	DESCRIPTION	EIP	1	TVD MEG NO	1
DES	DESCRIPTION	NO.	PER	TYP MFG NO.	FSCM
<u> </u>			ASSY		NO.
j					
R73	Comp, 1M, 5%, 1/4 W	4010105	2	RC07GF105J	81349
R74	R64				
R75	R73				
R76	Met Ox, 2.2K, 2%, 1/4 W	4130222	3	C4/2%/2.2K	24546
R77	Met Ox, 3.9K, 2%, 1/4W	4130392	3	C4/2%/3.9K	24546
R78	Comp, 5.6K, 5%, 1/4 W	4010562	1	RC07GF562J	81349
R79	Comp, 3.6K, 5%, 1/4 W	4010362	3	RC07GF362J	81349
R80	Met Ox, 7.5K, 2%, 1/4 W	4130752	3	C4/2%/7.5K	24546
R81	R76				
R82	R24		ł		
R83	Met Ox, 200, 2%, 1/4 W	4130201	3	C4/2%/200	24546
R84	R77				
R85	Met Ox, 330, 2%, 1/4 W	4130331	1 ,	C4/2%/330	24546
R86	Comp, 6.8K, 5%, 1/4 W	4010682	2	RC07GF682J	81349
R87	R79				[
R88	R80				
R89	R8				1
R90	Comp, 75K, 5%, 1/4 W	4010753	1	RC07GF753J	81349
R91	Met Ox, 33K, 2%, 1/4 W	4130333	1	C4/2%/33K	24546
R92	Met Ox, 160, 2%, 1/4 W	4130161	1	C4/2%/161	24546
R93	R21				
R94	MF, 12.1, NOM, 1%, 1/8 W	4069999	2		
R95	R94				
R96	R83				
R97	R83				1
R98	R77		1		
R99	R86				
R100	R79				
R101	R80				
R102	R10				
R103	R76		į .		
R104	Comp, 180, 5%, 1/4 W	4010181	1	RC07GF181J	81349
R105	R24		1		
R106	MF, 90.9, 1%, 1/8W	4069099	1	RN55D9099F	24546
R107	R62				
R108	R24				-
R109	R69				
R110	R17	1010101		500705404	04040
R111	Comp, 160, 5%, 1/4 W	4010161	2	RC07GF161J	81349
R112	R111	1000000		BNEED30005	04540
R113	MF, 20, 1%, 1/8W	4062009	1	RN55D2009F	24546
R114	Met Ox, 2K, 2%, 1/4 W	4130202	2	C4/2/2K	24546
R115	R114	4400040		04/00//04/	04540
R116	Met Ox, 9.1K, 2%, 1/4 W	4130912	2	C4/2%/9.1K	24546
R117	R116				
R118	Comp, 300Ω , 5%, 1/4 W	4010301	1	RC07GF301J	81349
R119	R45	1			
R120	R23	1		ł 	
R121	Comp, 68, 5%, 1/4W	4010680	1	RC07GF680J	81349
R122	Comp, 100Ω, 5%, 1/4W	4010101	1	RC07GF100J	81349
		1		1	
		1			
		1			
			1		1
			1		
			1	<u> </u>	

A 109	BAND 2 CONVERTER, continued			2020139-05, 06						
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.					
T1	Not Used									
TP1 thru TP16	Conn, Pin, .04D	2620032	16	460 - 2970 - 02 - 03	71279					
U1 U2 U3 U4	Prec, JFET Op Amplifier Periph. Interface Adaptor 750 MHz, D-Type Flip Flop Dual/Diff. Amplifier	3041016 3086821 3001106 3043049	1 1 1 2	OP16FJ MC6821 11C06 - Alt. MC1690L CA3049	06665 04713 07263 0000X					
U5 U6	U4 Op Amplifier	3040741	1	LM741CN	0000X					
				•						

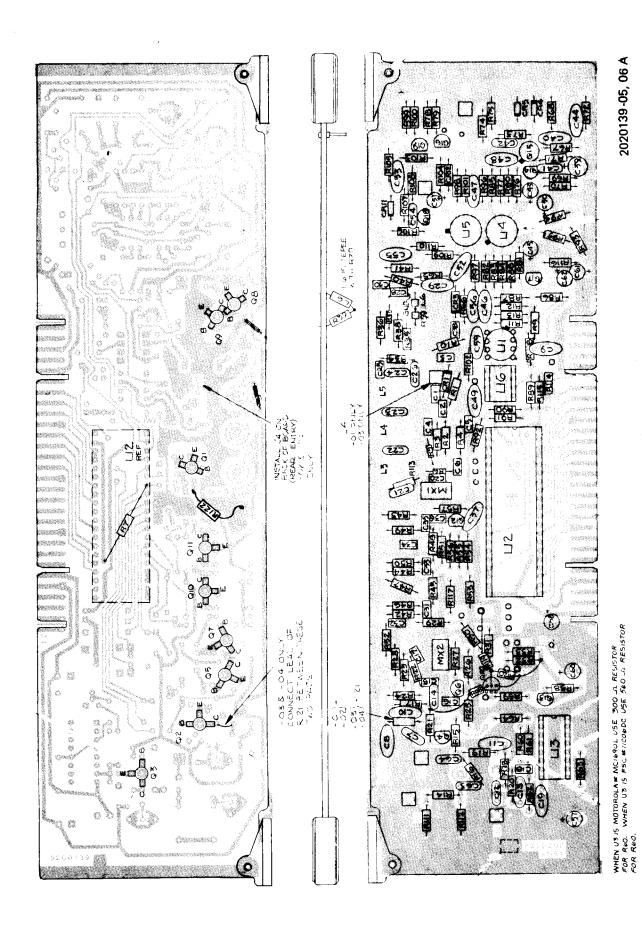
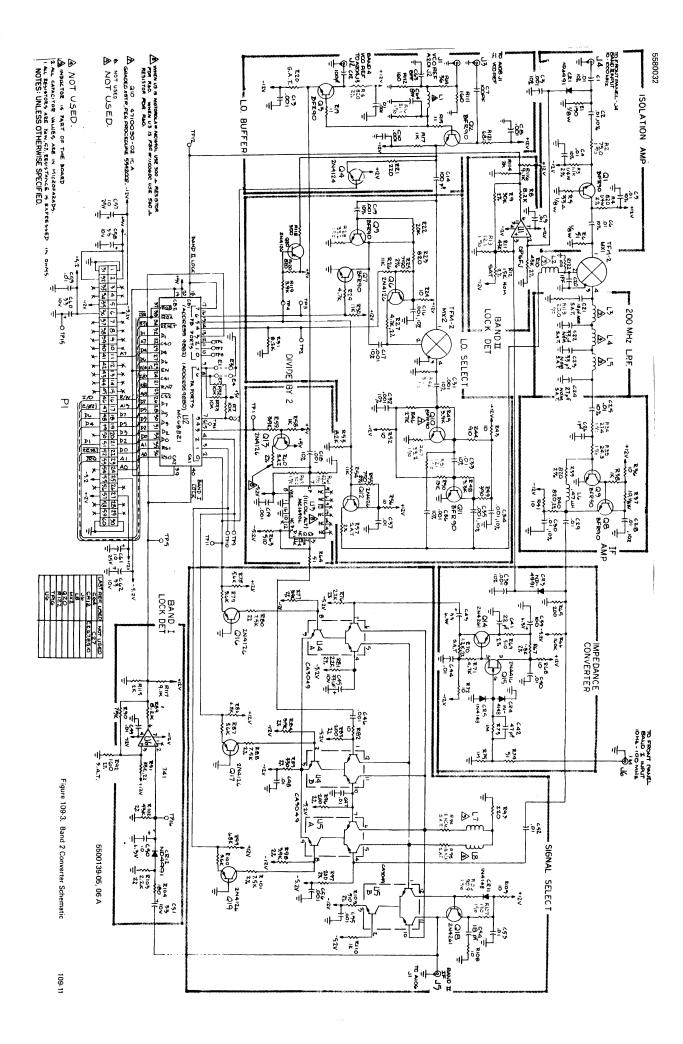



Figure 109-2. Band 2 Converter Component Locator

A110 FRONT PANEL DISPLAY AND KEYBOARD (2020140)

The Front Panel Display and Keyboard assembly (A110) is divided into two functional sections.

- Numeric display and annunciators
- Keyboard

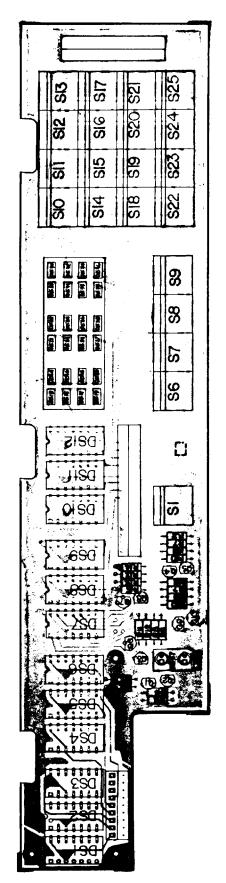
NUMERIC DISPLAY AND ANNUNCIATORS

This section of the assembly contains twelve common anode 7-segment numeric display units (DS1-DS12), two green LED's (DS37 and DS38), and a maximum of twenty-four yellow LED's (DS13-DS36).

The twelve 7-segment LED's are mounted side by side, with space between each third digit from the right. The corresponding cathode segments of the 7-segment LED's are connected, and the drive signals come from the segment drivers Q3 through Q10. The signals to drive the digits come from the digit drivers located on the Front Panel Logic board (A111).

The twenty-four yellow LED's (DS13-DS36) are divided into three groups of 8 LED's each. The anodes of all LED's in each group are connected. The cathode of each LED in a group are connected to one of the segment drivers (Q3-Q10). With this arrangement each group of annunciator lights can be regarded as similar to one 7-segment LED. The digit drives for the 3 groups of annunciator lights also come from the Front Panel Logic board (A111).

The two green LED's (DS37 and DS38) are driven by Q1 and Q2. When these LED's light they indicate that GATE and CONVERTER SEARCH are in operation.


KEYBOARD

This section of the assembly makes provision for a maximum of twenty-five (single-pole double-throw) switches of which only 21 are used. The switches are arranged in a 4 row by 6 column matrix, with the extra switch taking the row 4 column 7 position. The columns are connected to +5V through the resistor network (RN1) on the Front Panel Logic board (A111).

The keyboard is continuously scanned. The signals scanning the keyboard are derived from A111. To scan the keyboard the 4 rows are grounded sequentially. When a row is grounded, and a key in that row is pushed, one of the columns will be grounded. This information is sent to the A111 board where key debouncing is performed.

PAGE BLANK INTENTIONALLY

		· •			
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A110 Ω1	Front Panel Display & Keyboard	2020140-01	1	EIP	34257
thru					
Q10	PNP, RF, Amp.	4710019	10	2N4402	04713
R1 R2	Comp, 4.7K, 5%, 1/4 W Comp, 130, 5%, 1/4 W	4010472 4010131	2 2	RC07GF472J RC07GF131J	81349 81349
R3	R1		_		
R4 R5	R2 Comp, 240, 5%, 1/4 W	4010241	8	RC07GF241J	81349
R6	Comp, 18, 5%, 1/4 W	4010180	8	RC07GF180J	81349
R7 R8	R5 R6				
R9	R5				
R10 R11	R6 R5				
R12	R6				
R13 R14	R5 R6				
R15	R5				
R16 R17	R6 R5				
R18	R6				
R19 R20	R5 R6				
DS1 thru					
DS12	LED, Numeric, Red	2800024-01	12	TIL-312	01295
DS13 thru			i		
DS36	LED, Lamp, Yel	2800020	24	MV57124	50522
DS37 DS38	LED, Lamp, Grn DS37	2080018	2	MV5274	50522
S1	Switch, Mon., SPDT	4500040		DEV	
S2	Switch, Mon., 3r Di	4500013	21	REK	
thru S5	Not Used				
S6	Not Ozed				
thru S25	S1				
	Spacer, Led Alignment	5100084	1		
		200000-		22 14 202	00000
P1 P2	9 pin Recept. 17 pin Recept.	2620065 2620067	1 1	22 - 14 - 209 22 - 14 - 2171	A0000 A0000
Р3	13 pin Recept.	2620066	1	22 - 14 - 212	0000A
L			I	<u> </u>	

2020140-02- C

Figure 110-1. Front Panel Display and Keyboard Component Locator

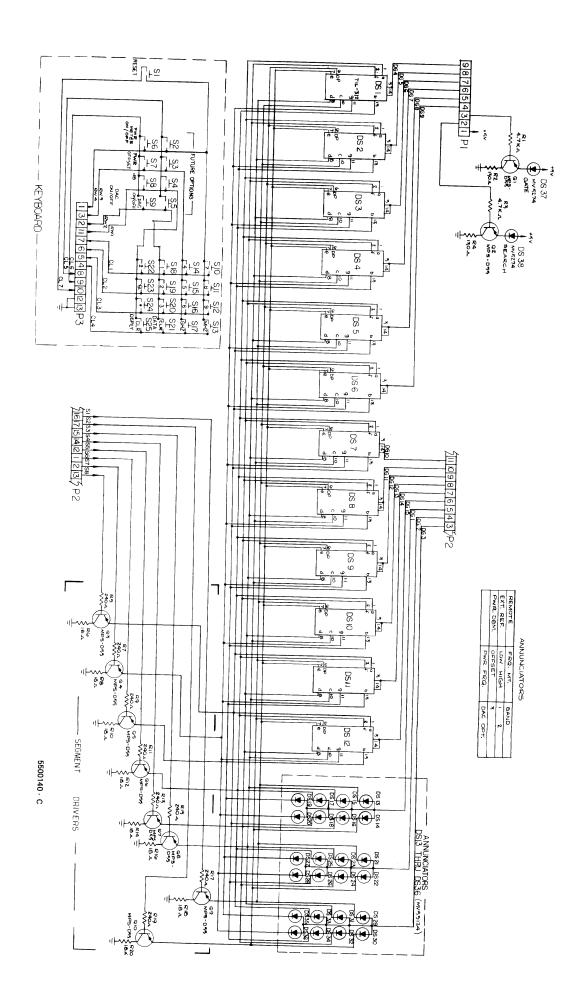


Figure 110-2. Front Panel Display and Keyboard Schematic

A111 FRONT PANEL LOGIC (2020191)

The Front Panel Logic assembly (A111) contains logic circuitry for control of two functions.

- DISPLAY CONTROL
- KEYBOARD CONTROL

The +5 V power supply to the front panel assemblies (A110 and A111) is regulated by a voltage regulator that is located behind the A111 board. For heatsinking purposes, this voltage regulator is mounted on the chassis. Please refer to figure 111-2, Front Panel Logic block diagram on page 111-3.

DISPLAY CONTROL

The twelve 7-segment LEDs and the three groups of annunciator lights on A110 are multiplexed. To turn on a particular segment in a digit, both the digit driver for that digit and the segment driver for that segment must be on.

The display logic is in constant operation in either the self-scan mode or the memory update mode.

SELF-SCAN MODE

This is the normal operating mode. In this mode the display scan clock is clocking the display counter (U6). The state of the display counter determines which digit will be turned on.

The state of the display counter is decoded by 4 to 16 line multiplexer (U2), and the appropriate digit driver is turned on. At this time the display memory (U7 and U8) is read, and the on/off information (stored in the display memory for that specific digit), turns the segment drivers (A110) on or off.

The display intensity is controlled by varying the duty cycle of the multiplexing. This is done by varying the resistance of the potentiometer (R4) which, in turn, varies the length of time the decoder (U2) and the display memories (U7, U8) are disabled between each scan clock cycle.

At the start of each gate operation the GATE light control is triggered, and the GATE LED lights for the length of the GATE.

MEMORY UPDATE MODE

In this mode the multiplexer logic is disabled by setting the display scan/update control line (PA4) to logic 0. The microprocessor controlled clock (clock, PA1) is used to clock the display counter(U6).

Before updating the display memory (U7 and U8), the display counter is cleared by setting the clear/load control line (PA5) to logic 1, and clocking the clock input of U6. Update mode timing is illustrated in figure 111-1.

KEYBOARD CONTROL

When the keyboard is not being read by the microprocessor, the Keyboard READ/SCAN control line (PA0) is at logic 0. All the outputs of the shift register are at logic 0. If no key on the keyboard is pushed, all the inputs to the 8-input NAND gate (U13) are at logic 1 level. When a key is pushed, the column containing that key will be grounded. The output of U13 goes to logic 1 and C7 (in the debounce circuit) starts to discharge. When the voltage across C7 reaches approximately +0.7 V above ground, the debounce circuit will trigger the interrupt input on the PIA (U11, pin 18) indicating that a key is being pushed.

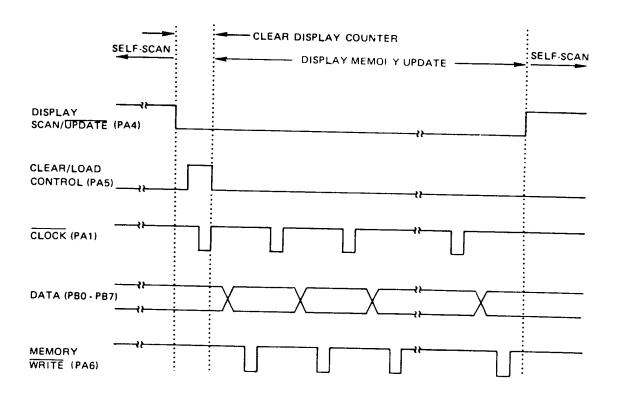
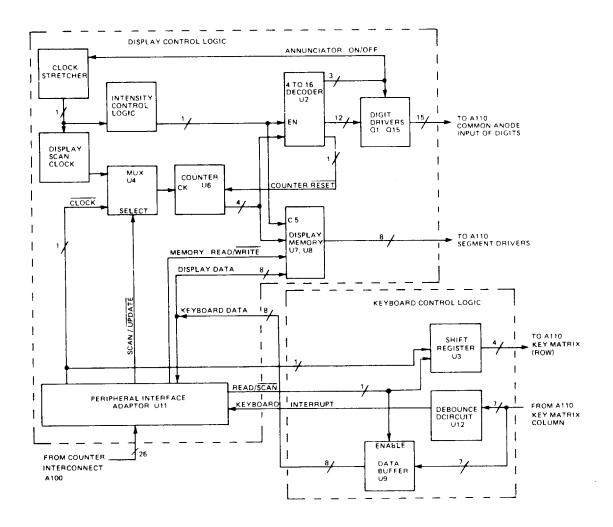
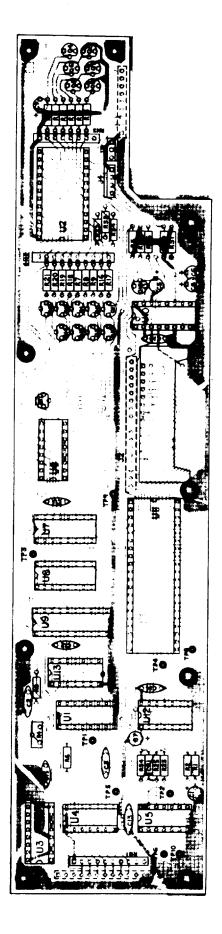


Figure 111-1. Memory Update Mode Sequence

READ KEYBOARD

When the microprocessor needs to read the keyboard, a logic 1 is put on the keyboard READ/SCAN control line (PA0). This enables the data buffer (U9). A 0111 is then loaded into the shift register (U3) by putting a logic 1 on the CLEAR/LOAD control line (PA5) and clocking the clock input of U3. The logic 0 at the output of the shift register (U3) is shifted through the shift register once. The microprocessor reads the keyboard row and column information with the logic 0 at each of the 4 outputs of U3 to determine the coordinate of the key pushed. After the keyboard is read, the keyboard READ/SCAN line is returned to logic 0.




Figure 111-2. Front Panel Logic Block Diagram

A111 FRONT PANEL DRIVER

C1 C2 C3 C4 C5 C6 C7 C8	Front Panel Driver Assy Tant, 0.1μF, 10%, 35V Cer., .002μF, 20%, 1KV C2 Not Used Tant, 47μF, 20%, 16V Tant, 2.2μF, 20%, 16V Tant, 22μF, 20%, 16V	2020191 2300020 2150005	1 1 2	EIP TAPA .10M35	34257
C2 C3 C4 C5 C6 C7 C8 C9 C10	Cer., .002μF, 20%, 1KV C2 Not Used Tant, 47μF, 20%, 16V Tant, 2.2μF, 20%, 16V	2150005		TADA 10M25	,
C5 C6 C7 C8 C9 C10	Tant, 47μF, 20%, 16V Tant, 2.2μF, 20%, 16V		2	TG - S20	14433 56289
	Tant, $.33\mu F$, 20%, 35V Tant, $33\mu F$, 20%, 10V	2300025 2300012 2300030 2300031 2300015	1 1 1 1	TAPA 47M16 TAPA 2.2M16 TAPA 22M16 TAPA .33M16 TAPA 33M16	14433 14433 14433 14433 14433
C15	Cer., .01μF, 20%, 100V	2150003	6	TG - S10	56289
CR1	Fast Switch	2704148	1	1N4148	07263
J2 J3 J4	9 Pin Male 17 Pin Male 13 Pin Male 4 Pin, FR. LOCK 3 Pin	2620062 2620064 2620063 2620068 2620121	1 1 1 1	22 - 03 - 2091 22 - 03 - 2171 22 - 03 - 2131 640456-4 640456-3	0000B 0000B 0000B 74868 74868
P2	26 Pin, Right Angle	2620131	1	3493 - 1002	76381
Q16	PNP, Power NPN, General Purpose Q16	4710027 4704124	15 2	MPS - D54 2N4124	04713 04713
R2 R3 R4 R5 R6 R7	Comp, 10K, 5%, 1/4W Comp, 220, 5%, 1/4W Comp, 75K, 5%, 1/4W Variable, Cer., 200K Comp, 120K, 5%, 1/4W Comp, 2.4K, 5%, 1/4W	4010103 4010221 4010753 4250022 4010124 4010242	2 1 1 1 1	RC07GF103J RC07GF221J RC07GF753J 72XR200 RC07GF124J RC07GF242J	81349 81349 81349 73138 81349 81349
	Comp, 1K, 5%, 1/4W	4010102	15	RC07GF102J	81349
R23 R24 R25 R26 R27	Not Used Comp, 15K, 5%, 1/4W Comp, 390, 5%, 1/4W Comp, 200, 5%, 1/4W Res, 820K, SAT 1;4W, 5% R1 Not Used	4010153 4010391 4010201 4010999	1 1 1 1	RC07GF153J RC07GF391J RC07GF201J RC07GF999J	81349 81349 81349 81349
R29	Comp, 2.2K, 5%, 1/4W Not Used	4010222	1	RC07GF222J	81349
R31 R32	Comp, 27K, 5%, 1/4W	4010273	1	RC07GF273J	81349
thru R34	Comp, 39K, 5%, 1/4W	4010393	3	RC07GF393J	81349
1	Network, 9 x 10 K RN1	4170003	2	785-1-R10K	32997
	Network, 7 x 10K	4170004	1	784-1-R10K	32997

A111 FRONT PANEL DRIVER continued

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
TP1 thru TP6 TP7 TP8 thru TP10	.040D Pin Not Used	2620032	9	460-2970-02-03	71279
thru TP10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14	TP1 TTL, Monostable, MV 4-16 Line Decoder IC, SR, PRL Access, 4-Bit, TI only AND - OR - INVERT Gates Quad, 2 INP NAND Gate Binary Sync Clear Bipolar RAMS U7 Oct Bus Trans U1 Periph, Interface Adaptor Hex Inverter 8INP NAND Gates Pos. Voltage Regulator (reference only - U14 part of front panel power supply)	3084123 3074154 3084195 3087451 3084132 3084163 3057489 3084244 3086821 3087414 3087430 3057805	2 1 1 1 1 2 1 1 1 1 1 1	DM74LS123N DM74LS195N SN74LS51N DM74LS132N SN74LS163 DM74LS189 SN74LS244N MC68B21P SN74LS14N DM74LS30N MC7805CT	0000X 0000X 01295 0000X 01295 0000X 01295 04713 01295 0000X 04713

2020191 -02 A

Figure 111-3. Front Panel Component Locator

Figure 111-4. Front Panel Logic Schematic

المسترث

A203 BAND 3 MICROWAVE CONVERTER

The A203 Microwave Converter consists of three functional sections:

Voltage Control Oscillator

IF Amplifier

Microwave (YIG)

CAUTION

Disassembly of the A203 Microwave Converter will void the EIP warranty.

The assembly drawing and schematic for both the VCO and IF circuits are not available. The entire A203 assembly must be tested as a complete unit to ensure proper performance of the counter. Repair of the Microwave (YIG) module can only be done at the factory. The VCO and IF Amplifier boards require special test equipment, therefore field repair is not recommended.

The Band 3 Converter is a complete microwave subsystem (see Figure 203–1) which converts an input signal in the 1 to 20 (26.5) GHz range down to an IF of 127 MHz. Down conversion is achieved in this heterodyne system by combining the input signal with a harmonic of a precisely known reference signal (FVCO). The mixer then produces a signal (FIF) equal to the difference between the input and reference harmonic. If this difference is close to 127 MHz, it is amplified to a level of about 0 dBm and then counted. The input signal is then determined from the equation FIN = NFVCO + FIF. FVCO is set by the instrument program via a phase locked loop located on the converter control board (A108) and is thus known exactly. harmonics of the VCO are produced by the comb generator and coupled to the mixer. The frequency ranges of the VCO and IF are such that for any VCO frequency and any input frequency, only one harmonic can produce an IF frequency. The YIG filter located between the RF input and the mixer is used to approximately determine the input frequency and from this information the desired values of N, FVCO and +/- are determined.

Two other outputs are obtained from the Band 3 Converter. The first is an analog signal which is a measure of input RF power. The second is a digital signal (IF THRESHOLD) which indicates that an IF signal exists at a level of -3 dBm or greater.

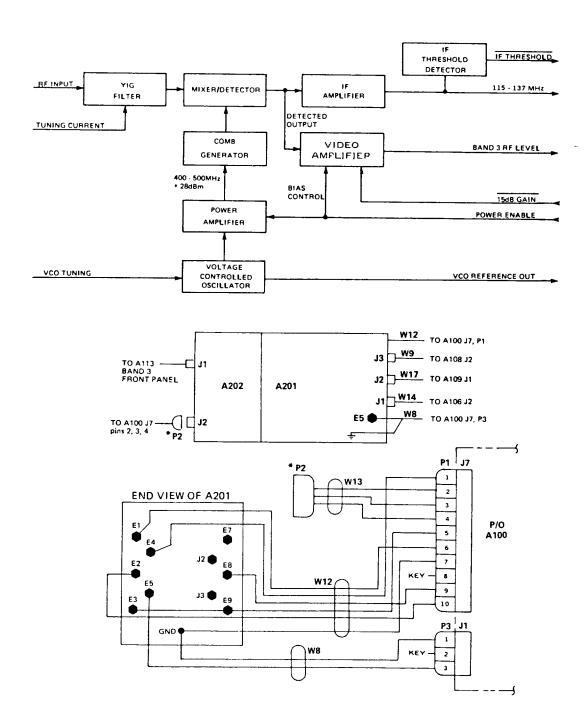


Figure 203-1. Band 3 Microwave Converter Diagram

Section 10 Options

Section 10 provides descriptions, specifications (where applicable), schematic diagrams and component locators for the options available for use with the Model 575B or 578B counter.

OPTION

01 D TO A CONVERTER

DAC will convert any three consecutively displayed digits into an analog voltage output on rear panel.

02 POWER MEASUREMENT

1 to 20/26.5 will measure sine wave amplitude to 0.1 dBm resolution and display simultaneously with frequency.

Power offset to 0.1 dB resolution, selectable from front panel. Option will not degrade the basic performance of the counter.

- 03 TIME BASE OSCILLATOR <5 X 10-9 (2010143-03)
- 04 TIME BASE OSCILLATOR <1 X 10-9 (2010143-04)
- 05 TIME BASE OSCILLATOR <5 X 10-10 (2010143-05)
- 06 EXTENDED FREQUENCY CAPABILITY 578B

Use in conjunction with model 590 Frequency Extension Cable Kit and optional Remote Sensors models 91 thru 94.

- 07 NOT USED
- 08 NOT USED
- 09 REAR PANEL INPUT
- 10 CHASSIS SLIDES
- 13 MATE-CIIL INTERFACE

OPTION 01 DIGITAL TO ANALOG CONVERTER

Option 01 will convert three consecutive digits to an analog voltage, available on the rear panel. The output will reflect the display, substituting zeros for any non-numeric characters that appear. The output will be updated after every display update.

SPECIFICATIONS

Output Voltage 0.000 volts to 0.999 volts

Accuracy (25° C) $\pm 0.5 \% \pm 1 \text{ mV}$ Temp. Stability (0-50° C) $\pm 0.01 \% / ^{\circ}\text{C}$

Resolution 1 mV

Load Impedance 1 K ohm minimum

Connector BNC female (on rear panel)

Protection + 10 V AC or DC applied to ou

± 10 V AC or DC applied to output connector will not cause damage. No damage will occur by any load.

OPERATION

On power up the DAC is in off state.

KEYBOARD OPERATION

A three key sequence selects the location of the most significant digit in the three digits desired. Digits are numbered 01 through 12.

PRESS:	X X XX can vary from 01 to 12.
EXAMPLES:	DAC 1 1 Hz digit selected
	DAC 10 Hz, 1 Hz digits selected
	DAC 0 3 100 Hz, 10 Hz, 1 Hz digits
	DAC 0 4 1 kHz, 100 Hz, 10 Hz digits
	•
	DAC 1 2 100 GHz, 10 GHz, 1 GHz digits

After pressing ____, the display will show the present DAC status, such as DAC OFF or DAC XX. Three decimal points will show the locations of the currently selected digits (if DAC is on).

After pressing the first X, the display will show the temporary entry e.g., DAC X, but the three decimal points will still show the previous DAC status.

After pressing the second X, the display will show the new entry, e.g., DAC X X. The three decimal points will move to the newly selected locations. The DAC output will be updated accordingly. Release of the last key pressed will return the display to display measurements.

Any illegal key strokes will result in displaying ERROR 10. The operator must restart the key sequence to enter the correct data.

To clear display of DAC data, ERROR display, or an unfinished key sequence, press
Display to return to display measurements, and DAC status will not be changed.

DISPLAY

To turn off DAC option Press: DAC OR O 0

GPIB OPERATION

To enable the DAC option through GPIB, input DC followed by two decimal digits. The two digits correspond to the location of the most significant digit in the three digits desired. To turn the DAC option off, input DC00 or DCP.

DC00 - turns DAC option off
DC01 - selects 1 Hz digit
thru

DC12 - selects 100, 10 and 1 GHz digits.

THEORY OF OPERATION

A simplified block diagram of the DAC portion of the A103 board is shown in Figure 01-1.

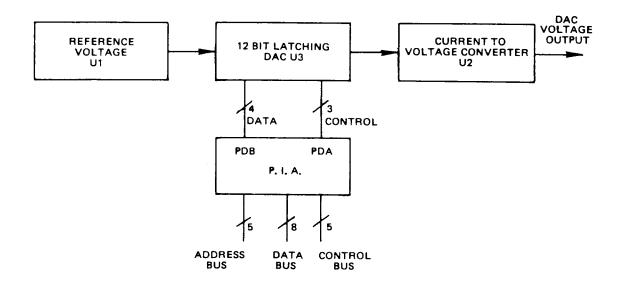


Figure 01-1. DAC Option, Simplified

HARDWARE

The DAC is referenced to a 1 volt reference voltage generated by U1. A gain adjustment, R5, is provided to calibrate the reference to 1 volt. U3 consists of a 12 bit multiplying DAC, three individual four bit registers, and address decoding. The digital data is written to the DAC four bits at a time and stored in the appropriate registers. The data is then transferred simultaneously to the DAC and in conjunction with U2 converts the digital data to an analog voltage corresponding to the three digits selected on the front panel. When the DAC option exists, U12 Pin 5 has to be grounded.

SOFTWARE

The DAC software is described in Figures 01-2 and 01-3.

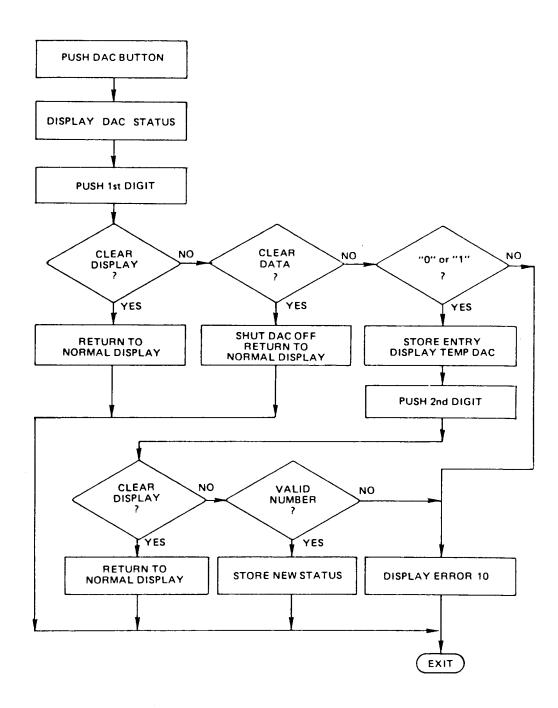


Figure 01-2. Keyboard Control

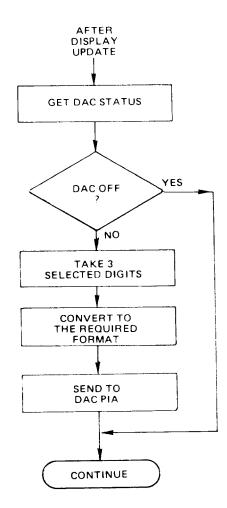


Figure 01-3. DAC Board Update

CALIBRATION

The following instruments or their equivalents are required to perform calibration of the DAC board. Calibration is required every six months or after the board has been repaired.

BRAND	MODEL	TYPE	SPECIFICATIONS
Fluke	8050A	DVM	4½ digit resolution

•	- 1				c	^	٨	ı	_	^	٨	•	t	D	D	۸	т	1	n	ħ	1
ı	-1	л	ш	L	5	ı.	Д	L	E	١.	A	Ł	ŧı	в	к	и		и	u	г	ч

		DAC			FREU			
1.	Enter:		0	3	OFFSET	9	9	9
					UFFSEI			

- 2. Connect the DVM to the DAC output on the rear panel.
- 3. Adjust R5 until the DVM reads .9990 Volts.

The calibration for the DAC board is complete.

PERFORMANCE TESTS

1. Enter: 0 3 FREQ OFFSET

The DAC output should be .000 V.

2. Enter: 9 9 9

The DAC output should be .999 V.

3. Enter: 5 5 5

The DAC output should be .500 V.

ENTER: TEST 2 1

A continuous count ramp from 000 to 999 is sent to the DAC board, regardless of DAC status or display.

Connect the DAC output to an oscilloscope. A ramp should be observed going from 0 to .999 volts. The ramp is built with 1 mV amplitude steps. Any failure in one or more of the digital lines on the board will cause either breaking in the ramp or multiple amplitude steps (2 mV, 4 mV).

During this test signature analysis can be used to determine if the DAC (A103U3) is receiving the correct digital information. Figure 01-4 contains the trigger points and the correct signatures for all of the digital lines to the DAC (A103U3).

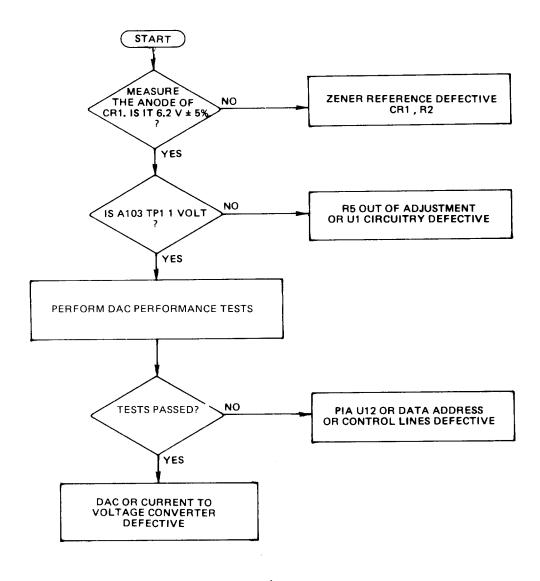
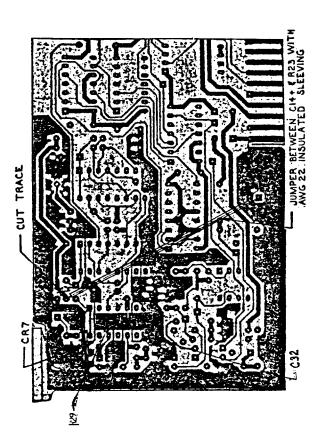


Figure 01-4. DAC Troubleshooting Tree

PAGE LEFT BLANK INTENTIONALLY

OPTION 01 - REFERENCE LOOP/DAC

2020201 -03 A


	TOT - REPERENCE LOOP/DAC				
REF		EIP	UNITS		TYP
	DESCRIPTION		PER	TYP MFG NO.	FSCM
DES		NO.	ASSY	, , , , , , , , , , , , , , , , , , , ,	NO.
			71331		110.
A103	Ref. Loop/Digital to Analog Converter	2020201-02	1	EIP	34527
		2020201 02	'	Lir	
C1	Cer, .01μF, 20%, 100V	2150003	14	TG-S10	FC200
C2	Mica, 33pF, 5%, 500V	2260021	1	CD10ED330J03	56289
C3	Mica, 100pF, 5%, 500V	2260034	1	CD10ED330303 CD10ED101J03	72136
C4	Tant, 33μF, 10%, 10V	2300015-00	4		72136
C5 thru	, , , , , , , , , , , , , , , , , , , ,	2000013-00	4	TAPA 33M10	14433
C12	C1				
C13	Tant, 10μF, 20%, 25V	2300029	4	DF106M25S	70400
C14	C13	2300023	-	DF 100W1255	72136
C15	C1				
C16	C1				
C17	C4	:			Ī
C18	C4				
C19	C1				
C20	C1				
C21	Tant, 1μF, 10%, 35V	3300000		TADA 4 01405	
C22	Cer, .047μF, 10%, 50V	2300008	1	TAPA 1.0M35	14433
C23	Met Film, .47μF, 10%, 63V	2150090	2	5020EM50RD473K	EMCAP
C24	C22	2350010	1	MKT-1819-447-06	0000B
C25	C4				
C26	Cer, .001μF, 20%, 100V	2450004			
C27	Tant, 100µF, 20%, 10V	2150001 2300039-00	2	5GA-D10	56289
C28	C13	2300039-00	1	TAPA100M10	14433
C29	C1				
C30	C13	1			!
C31	C26				
C32	Cap, Mica 47pF, 500V	226004-00	1		1 1
	oup, mou 17 pr , 500 v	220004-00	•		!
CR1	Zener, 6.2V	2700827	1	IN827	
CR2	Dual, Low Leak	2710013-00	i	ID100	22202
CR3	General Purpose	2704148-00	3	IN4148	32293
CR4	Varactor	2710025	1	MV1404	07263
CR5	CR3			W V 1707	04713
CR6	CR3				!
CR7	Zener, 5.1V	2705231-00	1	IN5231	04740
L1	Not Used				04713
L2	Inductor, .18μΗ	3150013	1	DD-0.18	72259
5.4			-	- 	,2239
R1	Met Film, 39.2K, 1%, 1/4W	4053922	1	RN55C3922F	81349
R2	Comp, 750, 5%, 1/4W	4010751	2	RC07GF751J	81349
R3	Met Film, 6.19K, 1%, 1/4W	4056191	1	RN55C619F	81349
R4	Comp, 1K, 5%, 1/4W	4010102	3	RC07GF102J	81349
R5	Variable, 500 ohm, 10 Turn	4280009	1	89PR 500	73138
R6	Comp, 10K, 5%, 1/4W	4010103	2	RC07GF103J	81349
R7	Comp, 510 ohm, 5%, 1/4W	4010511	8	RC07GF511J	81349
R8	Comp, 4.7K, 5%, 1/4W	4010479-00	2	RC07GF479J	81349
R9	R4				01349
R10	Comp, 4.3K, 5%, 1/4W	4010432	1	RC07GF432J	81349
R11	R7				3.575
R12	Comp, 220K, 5%, 1/4W	4010224	1	RC07GF224J	81349
R13 thru R16	R7				
R17	Comp, 1.5M, 5%, 1/4W				
R18	R8	4010155	1	RC07GF155J	81349
R19	Comp, 1.2K, 5%, 1/4W	4040400			
R20	R2	4010122	1	RC07GF122J	81349
R21	R7				
R22	R7			i I	
R23	Comp, 150 ohm, 5%, 1/2W	! : 4020151-00!		Boologies	
	35p, 130 onni, 3 3, 1/2W	. 4020151-00	1	RC07GF151J	81349
L		i		<u> </u>	LJ

OPTION 01 - REFERENCE LOOP/DAC

2020201-03 A

	TOT - HEI EHERGE EGGI / DAG				
REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MPG NO.	TYP FSCM NO.
R24 R25 R26 R27	Comp, 100 ohm, 5%, 1/4W Met Ox, 2.4K, 2%, 1/4W R24 R4	4010101 4130242	2	RC07GF101J C4/2%/2.4K	81349 24546
R28 R29	Met Ox, 2K, 2%, 1/4W R6	4130202	1	C4/2%/2K	24546
U1 U2 U3 U4 U5	Op Amplifier Op Amplifier/Buffer 12 Bit Latching DAC 8 Bit Latch U4	3040741 3040308 3057542 3034373	1 1 1 2	LM741CN LM308AN AD7542JN 74C373	0000X 0000X AD 27014
U6 U7 thru	UP/DOWN Counter	3084192	4	DM74LS192	27014
U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 TP1 thru TP8	U6 2-Modulous Prescaler Counter Control P.I.A. Dual Flip flop Phase Frequency/DET Quad NAND, 2 INP Dual "D" Flip flop Dual Decade Counter Quad NOR, 2 INP Op Amplifier, J-FET Oscillator .040D Pin, Gold	3112013-02 3112014 3086821 3087474 3014044 3087400 3110131 3084490 3110102 3040071 3011648 2620032	1 1 1 1 1 1 1 1 1 8	MC12013 MC12014 MC6821P DM74LS74 MC4044L DM74LS00 MC10131L SN74LS490N MC10102P TL071CP MC1648P 460-2970-02-03	04731 04731 27014 04731 27014 04731 01295 04731 01295 04731

PAGE LEFT BLANK INTENTIONALLY

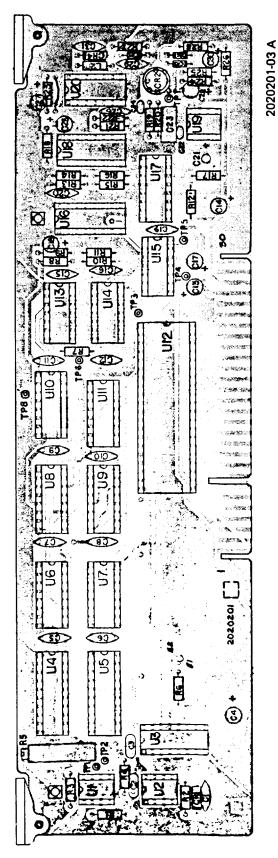


Figure 103-3. DAC / Reference Loop Component Locator

NOTE: C1 THRU C3, CR1, J2, R1 THRU R5, AND U1 THRU U3 ARE NOT USED ON -01.

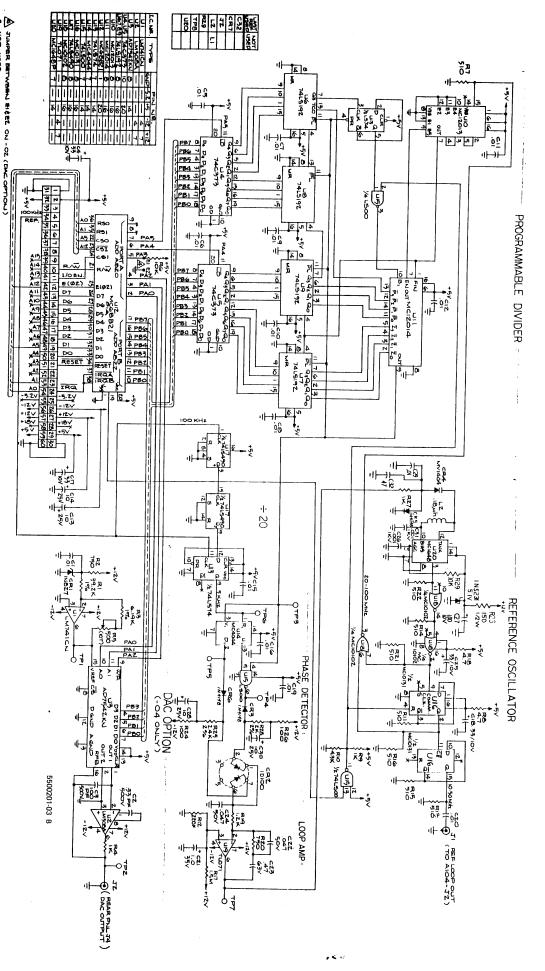


Figure 01-7. Reference Loop / DAC Schematic

NOTES: UNLESS OTHERWISE SPECIFIED.

3, NOT USED.

2. ALL CAPACITOR VALUES ARE IN MICROFARADS.

2. ALL OI WE CAPACITOR'S ARE IOOV.

1. ALL REDISTOR'S ARE 'AW,5%, AND ARE EXPRESSED IN OHMS.

OPTION 02 POWER MEASUREMENT

Option 02 measures the power of signals applied to Band 3. The power is displayed (to 0.1 dB resolution) simultaneously with frequency (to 100 kHz max. resolution). For A.M. and F.M. averaging purposes, gate time is controllable in the power meter mode, through the resolution function. Power gate time mirrors frequency gate time. For example, in resolution 0 the frequency gate time is 1 second, and the power gate time is 1 second. In resolution 1 the frequency gate time is 100 msec., and the power gate time is 100 msec. Option 02 allows power offsets from -99.9 dB to 99.9 dB, with a 0.1 dB resolution and will not degrade the basic performance of the counter.

SPECIFICATIONS

ACCURACY ± 1.2 dB Typical 0-50° C

± 0.5 dB Typical 25° C

TIME ADDED 1 GATE TIME + 50 msec.

RESOLUTION 0.1 dB POWER sensitivity to -10 dbm; 0.2 dbm -10 dbm to

OVERLOAD Selectable 100kHz - 1 GHz Frequency

RANGE ENTIRE OPERATING RANGE OF BAND 3

KEYBOARD OPERATION

POWER METER ON/OFF

To turn the power meter ON or OFF PRESS:

If the POWER METER option is off, pushing the POWER METER ON/OFF key will turn the POWER METER on. Pushing that key again will turn the POWER METER off. If the counter is displaying only frequency it will begin displaying frequency and power. If the counter is displaying frequency and power it will begin displaying frequency only.

Turn the power meter on. Observe the display. Frequency is displayed on the left, and power is displayed on the right. The dBm annunciator lights to indicate power meter operation. If the signal is too small to measure the power, the display will show EE.E in the power meter digits. (Since 0 dBm is a valid power, 00.0 cannot be used as a no power indicator.)

When the POWER METER option is on, the frequency measurements displayed on the front panel are to a maximum resolution of 100 kHz. The last selected gate time will be retained.

Power meter offset function enables the entry of a positive or negative power offset to 0.1 dB resolution. The offset will be incorporated into the power measurement after the next gate.

TO INPUT POWER OFFSETS

PRESS:	POWER METE OFFSET	R Notice flashing annunciator and power offset last entered.
PRESS:	#	Number keys corresponding to desired power offset.
PRESS:	1 1	To terminate input sequence. Notice OFFSET PWR annunciator solidly lit afte terminator key is released.

TO RECALL STORED OFFSETS

OFFSEET
PRESS: Stored offset is displayed.
CLEAR CRESS: DISPLAY Returns counter to display measurements.
TO REMOVE POWER OFFSETS
POWER METER DATA POWER METER OFFSEET O
GPIB OPERATION
PA - Power Active. Turns POWER METER option on.
PP - Power Passive. Turns POWER METER option off
PO - Power Offset. Enables entry of positive or negative power offsets to 0.1 dB resolution.

THEORY OF OPERATION

The power meter uses the Schottky diode in the microwave converter as its power sensor. The output of the diode detector is connected to a programmable gain attenuator, which consists of two switchable gain stages (one is in the IF Amplifier A201B and one is on the Gate Generator A107) and two 8 bit attenuators. A comparator, set to 100 mV, and a TTL latch provide output information to the microprocessor. See Figure 02–1.

Take a new reading after data entry if counter is not in HOLD.

After the counter has a signal, and has taken a frequency reading, it starts the power meter task. This triggers the gate time counter, resets the TTL power latch, moves the YIG ± 50 MHz (to insure that the signal peak is passed through), then checks the TTL power latch. If the latch is set, the attenuation is increased in 3 dB steps (until the signal is attenuated below the level of the comparitor), then back one step. If maximum attenuation is reached, and the latch is still being set, the word OVERLOAD is displayed and the task is exited.

When the latch is first checked, if it is still reset, the attenuation is decreased in 3 dB steps until the comparator level is reached. If minimum attenuation (maximum gain) is reached, the display is set to EE.E and the task is exited.

After the attenuation is adjusted to a 3 dB resolution, a successive approximation is performed to find the attenuation to a 0.1 dB resolution. The attenuation is stored, and if the gate time counter is not finished, the cycle is repeated. When the gate time counter is finished all the readings are averaged to eliminate the effects of AM on the signal.

The "power vs power" and "power vs frequency" corrections are added, and the sum is displayed. A detailed flowchart of the power meter is shown in Figure 02-2.

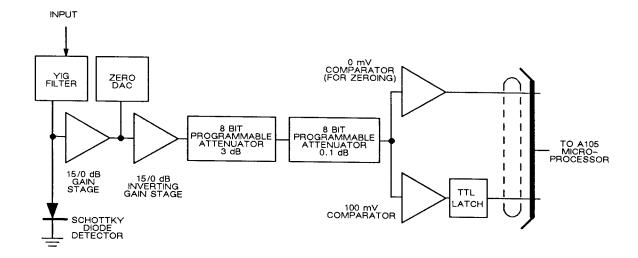


Figure 02-1. Power Meter hardware

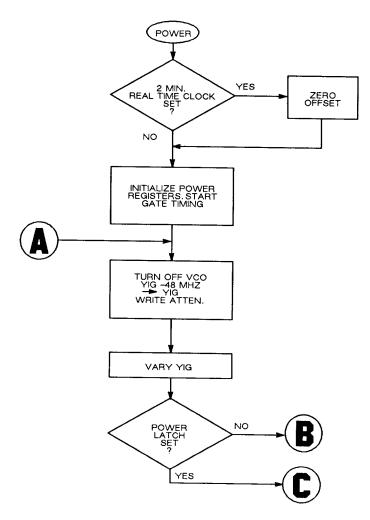


Figure 02-2. Power Meter Task

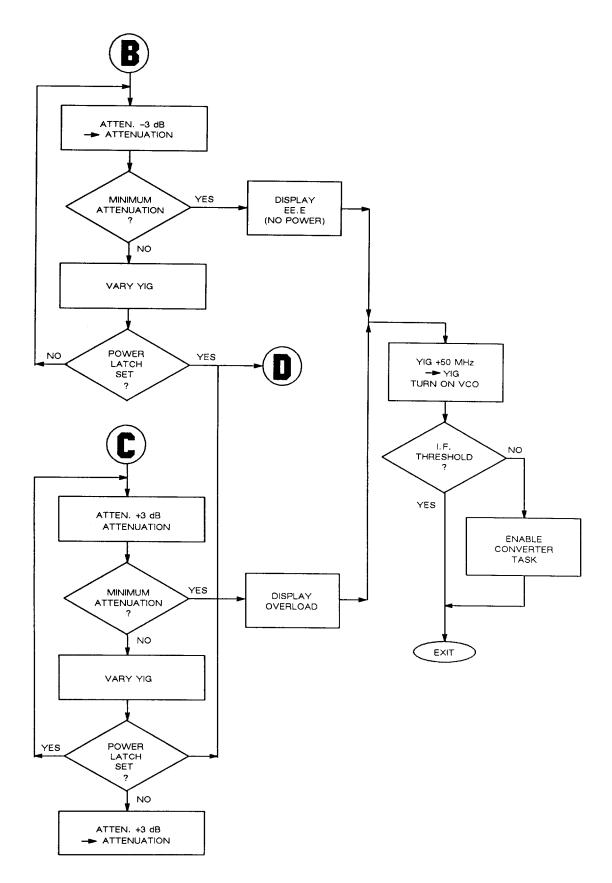


Figure 02-2. Power Meter Task, continued

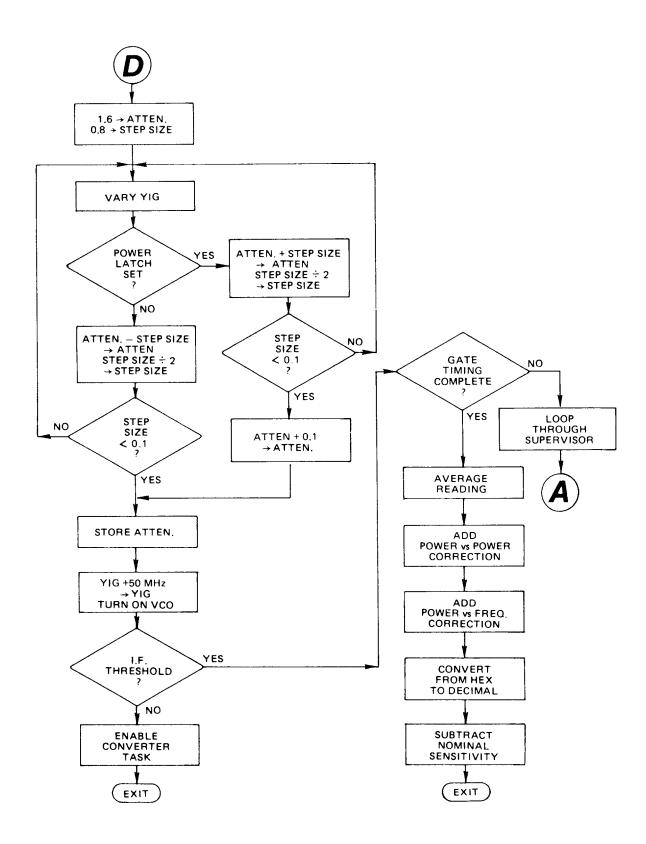


Figure 02-2. Power Meter Task, continued

CALIBRATION

The power meter contains 690 correction factors, stored in PROM.

The 150 "power vs power" correction factors compensate for variations from square law in the detector and power meter circuits. They are divided into three tables. The first table corrects variations below 10 GHz. The second corrects variations between 10 and 20 GHz. The third corrects variations above 20 GHz.

The 540 "power vs frequency" correction factors compensate for variations in the detector output at different frequencies. "Power vs frequency" corrections cover 0-27 GHz every 50 MHz.

The power meter is calibrated at the factory using specialized automatic test equipment. Recalibration in the field is not recommended.

(REFER TO SECTION 9, PAGES 107-5 AND 107-6 FOR PARTS LIST)

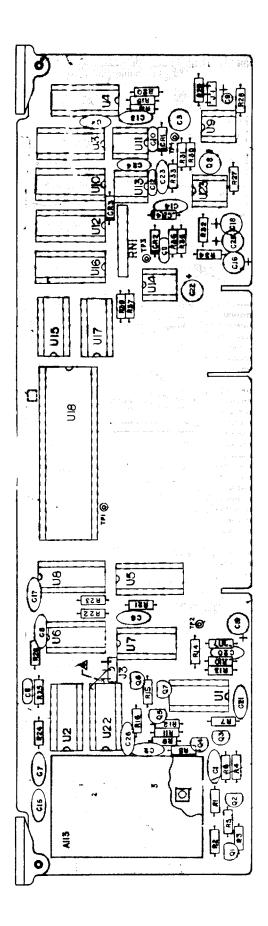
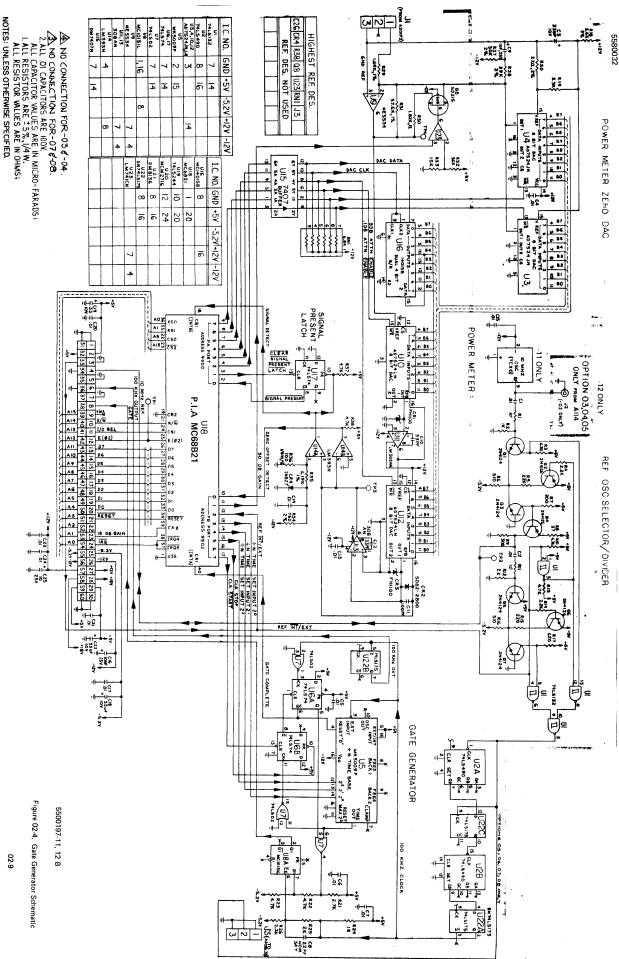



Figure 02-3. Gate Generator Component Locator

2020197-11,12 L

OPTIONS 03, 04, 05 TIME BASE OSCILLATORS

Three Time Base Oscillators are available as optitons for either the model 575B or 578B. These high stability options enhance the accuracy of the counter by the addition of oven stabilized crystal oscillators. These oscillators improve counter operation by reducing both time and temperature variations.

When any one of these options is installed, the TCXO is removed from the Gate Generator board (A107) and the following components are added.

One of three Oven Oscillators (A114) mounted on the chassis.

28 VDC Power Supply board (A112), assembly part number 2010226.

Power Supply Transformer T1 (part number 4900006) mounted on A112.

Time Base Adjustment Pot J2 (part number 2010190) mounted on the rear panel.

Related interconnecting cable harnesses.

	OPTION 03	OPTION 04	OPTION 05
CHARACTERISTIC	2030010-01	2030010-02	2030010-03
AGING RATE/24 HOURS (After 72 hour warm-up)	< 5 x 10-9	< 5 x 10- ⁹	< 5 x 10-10
SHORT TERM STABILITY (1 second average)	< 1 X 10- ¹⁰ rms	< 1 X 10- ¹⁰ rms	< 1 X 10-10 rms
0° to + 50° C TEMPERATURE STABILITY	< 6 x 10- ^e	< 3 x 10- ⁸	< 3 x 10- ⁸
± 10% LINE VOLTAGE CHANGE	< 5 x 10- ¹⁰	< 2 x 10-10	< 2 x 10-10

Figure 03/04/05-1. Time Base Oscillator Option Specifications

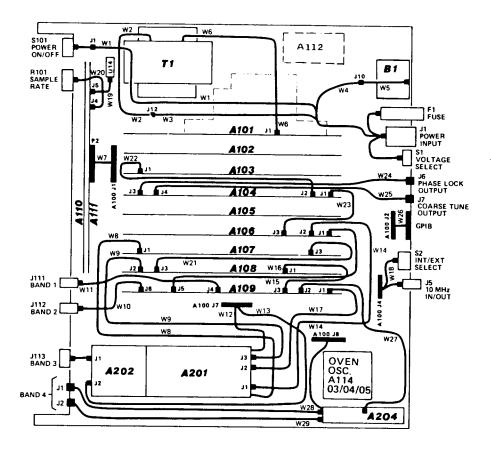


Figure 03/04/05-2. Component Location, Time Base Option

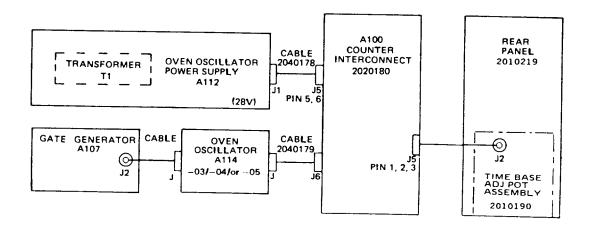


Figure 03/04/05-3. Time Base Option, Interconnection Diagram

OVEN OSCILLATOR POWER SUPPLY

The Oven Oscillator Power Supply board (A112) is a simple 28V regulated, current limited power supply. U1 and U2 provide voltage regulation, thermal protection and current limiting.

The transformer T1, CR1, C1 and C2 provide a 40V nominal unregulated DC voltage. The output voltage is set by voltage divider R5, R3 and R4. These resistors were selected so that 28V out provides 2.23V at U2 pin 2 (to U2 pin 1). Diode CR2 protects the supply from being pulled more negative than ground. See the schematic in figure 03/04/05-6.

The power supply (A112) is on and operating as long as the counter is connected to an active AC power source. The counter's POWER ON/OFF switch on the front panel does not control this assembly.

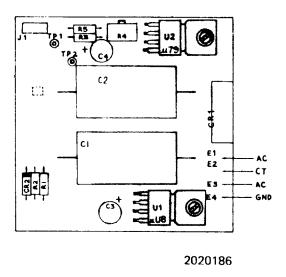


Figure 03/04/05-4. Oven Oscillator Power Supply (A112) Component Location

OVEN OSCILLATOR CALIBRATION

When options 03, 04 or 05 are installed in the counter, the effects of temperature perturbations and aging must still be considered, although the magnitude of the inaccuracies associated with each oscillator are greatly reduced.

Full benefit of the oven stabilized oscillator characteristics can only be realized if the oscillator is running continuously (with counter always connected to a source of AC power). Under these conditions the perturbations in frequency will generally be in the positive direction for either an increase or decrease in temperature from + 25°C. The aging characteristic is also generally in the positive direction.

How frequently the oscillator is adjusted is determined by the level of accuracy required. To adjust the oscillator to an inaccuracy of less than 1 \times 10⁻⁹ parts, relative to a standard, use this procedure. The test is illustrated in Figure 03/04/05-5.

Observe the drift of the oscilloscope pattern. The fractional frequency offset is computed from:

$$\frac{\text{Tdrift of zero crossing}}{\text{Tobservation time of drift}} = \frac{\Delta f}{f}$$

If the pattern drifts, at a rate of .01 microsecond every 10 seconds, the frequency is in error by 1 part in 109.

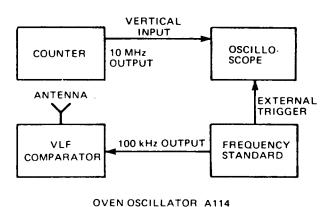


Figure 03/04/05-5. Time Base Calibration.

All frequency checks and adjustments should be made only after the oscillator has been connected to its power source for 24 hours. If the oscillator has been disconnected from its power source for more than 24 hours it may require 72 hours of continuous operation to achieve the specified frequency aging rate.

To measure oscillator frequency:

- 1. Connect the counter's internal oscillator output signal from the 10 MHz IN/OUT connector (on the rear panel of the counter) to the vertical input of the oscilloscope.
- 2. Trigger oscilloscope externally with the frequency standard. The VLF comparator is used to determine the absolute frequency of the standard.
- 3. Set oscilloscope sweep rate to 0.01 μ sec/cm.
- 4. Adjust oscilloscope vertical controls for maximum gain.
- 5. Determine the frequency difference (see page 6-24).
- Horizontal drift of oscilloscope display in μsec/sec is a measure of the difference between the frequency standard and the counter oscillator frequency. If the difference is excessive for the desired counter application, vary the TIME BASE ADJUST control on the rear panel of the counter until the pattern stops drifting.

NOTE

For highest accuracy, the counter should be operated for 72 hours prior to adjustment.

OPTION 03/04/05 - TIME BASE OSCILLATOR PCB ASSYs

2020186 - B

REF DES	DESCRIPTION	EIP NO.	UNITS PER ASSY	TYP MFG NO.	TYP FSCM NO.
A112 C1 C2 C3 C4	OSCILLATOR POWER SUPPLY Elec, 680 uF, 40V C1 Tant, 10 uF, 25V C3	2020186 2200021 2300029	1 2 2	EIP 3074JH681T040JPB DF106M25S	34527 80031 NEC
CR1 CR2	Bridge Rectifier Rectifier	2710019 2704001	1	SBMB1 IN4001	14099
R1 R2 R3 R4 R5	Met Ox, 3.3K, 2%,1/4W Met Ox, 2K, 2%,1/4W Met Ox, 560, 2%,1/4W Variable, Cer, 500, 10% Met Ox, 3.6K, 2%, 1/4W	4130332 4130202 4130561 4250014 4130362	1 1 1 1	C4/2%/3.3K C4/2%/2K C4/2%/560 72XR500 C4/2%/3.6K	24546 24646 24546 73138 24546
U1 U2	Positive Voltage Regulator Negative Voltage Regulator	3040780 3040790	1	uA78MGUIC uA79MGUIC	07263 07263

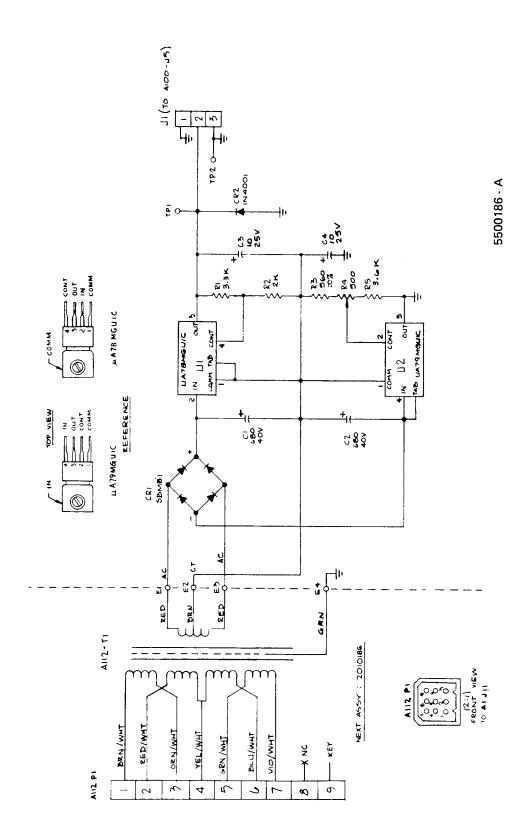


Figure 03/04/05-6. Time Base Option Schematic

OPTION 06 EXTENDED FREQUENCY CAPABILITY

The frequency range extension option is available on the 578B counter. This option, when used with the model 590 Frequency Extention Cable Kit and one of the optional remote sensors, enables the counter to operate above 26.5 GHz. The option consists of:

- Band 4 Converter Module
- Band 4 Software
- Modified Front Panel Overlay
- Coax Cable, Front Panel to A204 J1 P/N 2040232
- Coax Cable, Front Panel to A204 J2 P/N 2040231

KEYBOARD OPERATION

To operate the counter in one of the Band 4 frequency ranges, connect the short cable (supplied with the frequency extension kit) from the lower output jack on the front panel, to the Band 3 input. Connect the long cable from the upper jack to the remote sensor.

NOTE: Before connecting the remote sensor to the frequency source, verify that the power level is within the limits specified for the sensor. When you connect the sensor the counter will automatically display the reading.

To select Band 4:	PRESS :	BAND	Band annunciator flashes
	PRESS:	4	Band 4 annunciator flashes
	PRESS :	#	Selected Band 4 annunciator lights , stays on

The number should be between 1 and 4, corresponding to the desired frequency range. The counter is now in the proper mode for operation.

SPECIFICATIONS

BAND	FREQUENCY RANGE	SENSITIVITY (TYPICAL)	MAX. INPUT	REMOTE SENSOR MODEL
41	26.5−40 GHz	{ -25 dBm typ. } -20 dBm min. }	+5 dBm	91
42	40~60 GHz	-25 dBm	+5 dBm	92
43	60-90 GHz	-25 dBm	+5 dBm	93
44	90-110 GHz	-25 dBm	+5 dBm	94

GPIB OPERATION

To select Band 4 through the GPIB, input B4 followed by one decimal digit between 1 and 4. The digit designates individual remote sensors.

EXAMPLE: B41 = remote sensor 1 which covers 26.5 to 40 GHz.

THEORY OF OPERATION — HARDWARE

When measuring a signal frequency greater than 26.5 GHz. the 578B using the Option 06 Frequency Extension with a model 590 kit and a 91 remote sensor down converts the input to approximately 1.0 GHz. This signal is then fed to the Band 3 input, where a second conversion produces a 125 MHz IF.

A multiplier chain increases the VCO output frequency to the 5.28-6 GHz range, which is referenced to the time base. See Figure 06-1. This signal provides the local oscillator (LO) power, which is transmitted to the remote sensor, an external harmonic mixer. When the input frequency and harmonics of the LO, (generated in the mixer) combine, a first IF is generated in the range of 1.00-1.35 GHz.

A diplexer separates the LO and IF signals received from the harmonic mixer. The level of the IF is then increased to a minimum of -25 dBm via the IF amplifier, then supplied to the Band 3 converter input.

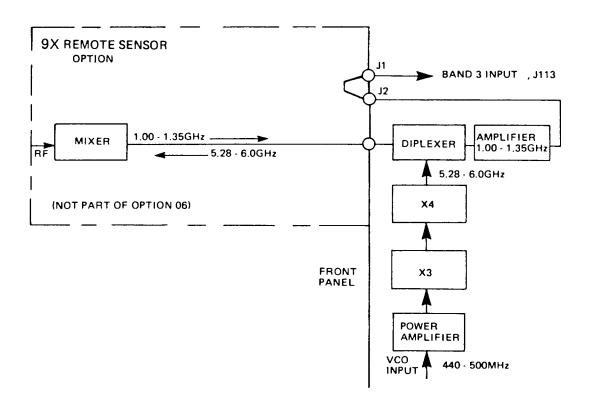


Figure 06-1. Frequency Extension Block Diagram

THEORY OF OPERATION - SOFTWARE (LOCKING ROUTINE)

The Band 4 software performs two main functions: it locks onto an incoming RF signal, and it tracks an RF signal once it is locked.

The locking routine is called by the supervisor when any of the following conditions are met:

- 1. Selection of Band 4
- 2. Software called from the source lock routine.
- 3. Lose of IF threshold after being locked.
- 4. Any reset condition.

LOCKING PROCESS

Initialization

The initialization routine clears the working table (BANDTB) for Band 4 and loads from PROM the table of constants that is used by the program for the selected Band 4 subband. BANDTB is an area in RAM that is 40 bytes long.

VCO Sweep

This routine steps the VCO frequency by a step size stored in BANDTB. After each step, it checks the VCO frequency for three stop points.

- Top VCO frequency limit (depends on subband),
- 2. Wraparound frequency
- 3. Lockout frequency

If the top VCO frequency has been reached and no signal has been found, the program returns to the supervisor. If the top frequency is reached, and a signal has been detected, the VCO is set to its low limit and the bottom range is searched until the wraparound frequency is reached.

If the wraparound frequency has been reached (the frequency at which the last VCO frequency has produced the strongest IF signal), then the program stays at this frequency, and performs the centering and harmonic number calculation routines.

If a lockout frequency (a VCO frequency at which erroneous locking results) is detected, the VCO frequency will be incremented by :

8 * step size = new VCO frequency

and the program continues from this frequency.

After each VCO step, the YIG filter is swept to see if a signal is detected by the power DAC attenuator. If a signal is detected, the YIG is swept back and forth, and the attenuation is increased until the signal is lost. At this point a new VCO frequency is stepped and the process of signal detection continues and the power DAC is left at the last setting to detect the next highest signal.

Centering and Harmonic Numbering Determination

After the VCO sweep routine is complete and the VCO frequency is set, the incoming signal is mixed with a harmonic of the VCO frequency to produce a signal in a predetermined passband region (1.05 GHz to 1.25 GHz). Then a small VCO frequency is incremented to determine the mix side. After the VCO step, if the resulting IF increases, it is high side mix, otherwise, it is low side mix. The IF is then stepped to 1.05 GHz (or as close as possible) by using the following formula to calculate the VCO step size:

Where N MAX is the highest harmonic number allowed in the subband.

The above calculation is performed at most twice to bring the IF to 1.05 GHz. At this point the YIG is centered and the centering frequency FYIG1 and VCO frequency FVCO1 are stored. Next the VCO is stepped to bring the IF to around 1.25 GHz and a new centering takes place. This second center frequency is stored for later calculation of the harmonic number. Next the signal is stepped to its previous position and centered. This center frequency is now compared to FYIG1, and must be within 6 MHz. If it is not within 6 MHz, it is assumed that the signal is moving, and the Band 4 program exited.

The IF frequency step size, caused by the VCO frequency step, is used to determine the harmonic number by the following equation.

$$\frac{\Delta \text{ IF FREQ. DUE TO VCO STEP}}{\text{HARMONIC SPACING}} = \text{HARMONIC \#(N)}$$

Where harmonic spacing = VCO step size X 12

CALCULATION ROUTINE — The calculation routine is used to find the approximate RF frequency $F_{\mbox{\scriptsize IN}}$ in the following manner.

- 1. Compute F' = 12 N X F_{VCO}
- 2. Center the YIG filter on the first IF
- 3. Convert the binary YIG frequency to BCD
- 4. Compute $F_{IN} = F' \pm F_{YIG}$ (where F_{YIG} gives the approximate value for the first IF).
- 5. Compute a corrected VCO frequency using the equation:

$$F_{VCO} = (F_{1N} \pm 127) / (12N \pm 2)$$

Then tune the VCO with the corrected frequency and center the first IF frequency in the YIG passband

SHALLOW SEARCH — This routine tests for a signal in the IF passband. It a signal is present, the routine is exited. If a signal is not present, the routine will search an RF range of ± 60 MHz (in steps of 200 kHz), for the signal, and continues if a signal is found. If a signal is not found, the Band 4 program returns control to the supervisor.

BAND 4 TRACKING — The tracking routine centers the second IF in the following range.

This routine is called from outside of the Band 4 program to track a signal. A test is first made to determine if an IF threshold is present. If IF threshold is present it continues, if not the program returns to the supervisor to start the locking process from the beginning.

This routine reads the second IF frequency and computes the new VCO frequency so that the second IF is in the range given above. A new YIG frequency is calculated and the VCO and YIG are "tuned" to produce a new IF. A new FLO (frequency added to the second IF to produce the displayed frequency), is calculated. The equation for this process is:

$$F_{LO} = F_{VCO} (12 N \pm 2)$$

The YIG frequency is: NEW $F_{YIG} = 2$ (NEW VCO) + 127 MHz.

PERFORMANCE TESTS

The Band 4 converter module is not field repairable. When a malfunction is suspected, its operation can be checked from the front panel as follows:

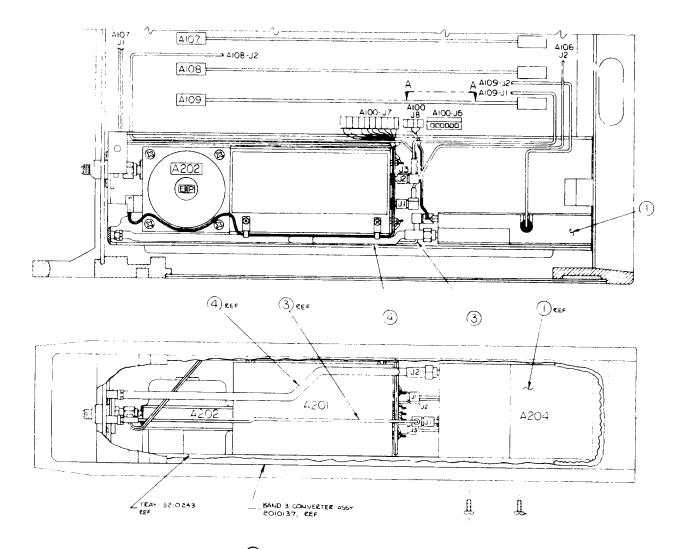
IF AMPLIFIER

Apply a -50 dBm signal to the diplexer port (upper output jack) from 1.0 to 1.35 GHz. Output should be greater than -13dBm as checked on a spectrum analyzer to the IF output (lower jack).

LO SIGNAL

Connect a spectrum analyzer to the diplexer port (upper output jack). Using the following formula, set the VCO frequency between 440 and 500 MHz. The spectrum analyzer should show the 12th harmonic of the VCO frequency (5.28-6 GHz). The spectrum analyzer signal should be +8 dBm minimum, and free of breakup and spurious signals to -30 dBc.

To convert from the desired VCO frequency to the PIA program number:


EXAMPLE (440.75 MHz)

1.	Round the desired frequency to a multiple of 50 KHz (The resolution of the VCO frequency is 50 KHz).
2.	Multiply the desired frequency (in MHz) by 5 \dots 440.75 X 5 = 2203.75
3.	If the result contains no fractional part, go to step 8.
4.	Multiply only the fractional part by 16
5.	Add the result to the most significant digit from step 2
6.	Convert the result to hexadecimal
7.	Replace the MSD from step 2 with the result from step 6 and drop the fractional part
8.	The two most significant digits are programmed to address 1822, and the two least significant digits are programmed to address 1820.

To remove a defective converter:

- 1. Remove the line cord and both the top and bottom cover of the counter.
- 2. Remove the two screws holding the converter in place from the bottom.
- 3. Remove coaxial cables and unplug DC harness.
- 4. Lift the converter out of the counter.

To replace, proceed in the reverse order. See Figure 06-5 for location of the converter in the counter.

- 1 Band 4 Converter 2010229
- 3 Cable (FP to A204J1) 2040232-01
- (4) Cable (FP to A204J2) 2040231-01

Figure 06-2. Location of Installed Band 4 Converter (A204)

Option 09 provides rear panel input for 575B/578B counters, and counters equipped with Option 06 in the following manner:

575B/578B COUNTERS:

- 1. Reversing the converter assembly so that the Band 3 input connector protrudes through the hole in the rear panel that is identified as J113.
- 2. Reversing the Band 1 and Band 2 connectors to the holes marked J111 and J112 respectively on the rear panel.

Option 06 Equipped Counters:

- 1. Reversing the converter assembly so that the Band 3 input connector protrudes through the hole in the rear panel that is identified as J113. Reversing the Remote Sensor and Band 3 jumper connectors to the holes marked J114A (Rmt. Sensor) and J114B (Band 3 Connector) respectively.
- 2. Reversing the Band 1 and Band 2 connectors to the holes marked J111 and J112 respectively on the rear panel.

NOTE

The specifications for the counter do not change when the input is from the rear panel.

1			

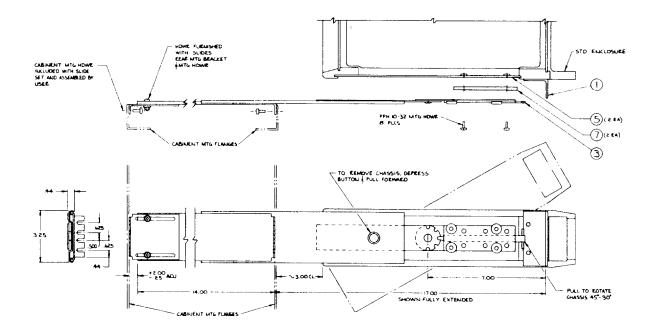
OPTION 10 CHASSIS SLIDE

Option 10 equips your counter with the hardware required to mount the unit in a standard 19" wide console. With the chassis slide installed the counter can be serviced without removing it from the rack.

The option consists of:

OPTION 10 - 2010147

- Rack Mount Kit 2010008-01
- 3) Slide Set


- 5000189

(5) Side Panels

- 5210179

Spacers

- 5210249

- 1. All MTG HDWR and hole spacing conforms to MIL-STD-189.
- To install slides in field; Remove top cover and top frame; Mount special side panels (5210179) on Std. enclosure.
- 3. Item numbers within symbol are on P/L 2010147. All other items assembled or exploded are shown for clarification or reference only.

Side View of Counter With Option 10 Installed

1			

Appendix A Accessories

MODEL 590 FREQUENCY EXTENSION CABLE KIT

The kit, part number 2000025 contains:

1 - LO Cable (long) - 2040217

1 - IF Cable (short) - 2040218

1 - Adaptor (SMA to TNC) - 2610063

0 - 5 - Remote Sensors (Options 91 thru 96)

REMOTE SENSOR OPTIONS

		5550151015		
	PART NUMBER	FREQUENCY RANGE		
91	2030022-00	26.5 – 40 GHz		
92	2030029-00	40 – 60 GHz		
93	2030030-00	60 – 90 GHz		
94	2030031-00	90 – 110 GHz		
95	2030038-00	50 – 75 GHz		
96	2030059-00	33 – 50 GHz		

SPECIFICATIONS

BAND 4 Used with 578B/06 Counter and 590 Frequency Extension Kit						
OPTION	91	92	93	94	95	96
SELECT BAND	41	42	43	44	42 or 43	41 or 42
Waveguide Band	Ka	U	E	w	V	Q
Range	26.5-40 GHz	40-60 GHz	60-90 GHz	90-110 GHz	50-75 GHz	33-50 GHz
Sensitivity (typ)	-25dBm (-20 dBm min.)	-25 dBm	-25 dBm	-25 dBm	-25 dBm	-25 dBm
Waveguide Size	WR-28	WR-19	WR-12	WR-10	WR-15	WR-22
Waveguide Flange	UG-599/U	UG-383/U	UG-387/U	UG-387/U	UG-385/U	UG-383/U
Max. Input (typ)	+5 dBm	+5 dBm	+5 dBm	+5 dBm	+5 dBm	+5 dBm
Damage Level	+10 dBm	+10 dBm	+10 dBm	+10 dBm	+10 dBm	+10 dBm
Aquisition Time	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec

INSTALLATION

Before connecting the remote sensor to the frequency source, verify that the power level is within the limits specified for the sensor.

Connect the long LO cable from the upper jack to the remote sensor. When using the sensor option 91, use the SMA-TNC adaptor in the 590 kit.

Connect the short IF cable from the lower jack to the Band 3 input.

CAUTION

Static discharge or ground loops can damage or destroy the diode in a remote sensor. ALWAYS connect the LO cable to the counter first, then touch the shield to the body of the sensor before connecting.

Be sure that the counter and waveguide port, to which the sensor will connect have a common ground. If in doubt, connect with a ground strap before connecting the remote sensor.

OPERATION

After connection, select Band 41, 42, 43 or 44 on the 578 counter (equipped with option 06). Select the band by:

PRESS: 4 1 or 42, 43 or 44.

Be certain that the band selected coincides with the remote sensor in use. See specifications Table.

NOTE

Frequency limits (low/high) and power meter function (Option 02) only operate to 26.5 GHz.

REPAIR

If loss of sensitivity occurs the diode in the sensor may be damaged. The 91 sensor diode can be replaced, all others require factory repair.

To replace the 91 sensor diode, unscrew the knurled cap and pull out the diode. Replace it with a 1N53B type diode that can be ordered from the manufacturer.

Alpha Industries, Inc. 20 Sylvan Road Woburn, MA 01807

Or order from EIP by part number 2730053.

EIP has an assembly exchange program for rapid repair of damaged units. Consult factory for details.

SERVICE KIT

Th service kit for the 575B/578B counter contains the following items and the kit itself is useful as a carrying case.

2000017	Service Kit
2020147	GPIB/BCD Extender Board
2020184	Standard Extender Board
2020185	Band 2 Extender Board
2040221	Cable, BNC to Select
2040222	Cable, BNC to PC JK
2610054	Test Cable, BNC E/Z Hook
5000094	IC Extractor Tool

This kit comes in a useful carrying case.

		;
ı		

Appendix **B** List of Manufacturers

ESCM	_MANUFACTURER
0000X	
0000	Any Manufacturer of this product.
00656	Agravay Ing. 740 Religible Ave No. 10 to 4 144 00744
00809	Aerovox Inc., 740 Belleville Ave, New Bedford, MA 02741 Croven Ltd., Whitby, Ontario, Canada
01121	Allen Predict Co., South Mileseller, Mr. 50004
01295	Allen-Bradley Co., South Milwaukee, WI 53204
02660	Texas Instruments Inc., Dallas, TX 75222
02735	Amphenol Connector Div., Bunker Ramo Corp., Broadview, IL 60153
04618	Solid State Div. RCA Corp., Somerville, NJ 08876
04713	American Pamcor Inc., Paoli, PA 19301
06665	Motorola Inc., Semiconductor Div., Phoenix, AZ 85008
07263	Precision Monolithic Inc., 1500 Space Park Drive, Santa Clara, CA 95050
08717	Fairchild Semiconductor, Mountain View, CA 94040
09353	Sloan Company, Sun Valley, CA 91352
	C & K Components Inc., Watertown, MA 02172
11236	CTS of Berne Inc., Berne, IN 46711
11237	CTS, Keen, Paso Robles, CA 93446
12463	Optronics Mfg., 2420 S. 60th St., Omaha, NE 68106
14158	AVX, Filters, 10080 Willow Creek Rd., San Diego, CA 92131
14298	American Components Inc., Conshohocken, PA 19428
14433	ITT Semiconductor Div., West Palm Beach, FL 33401
14455	Quality Hardware Mfg. Co., 12605 Daphine, Hawthorn, CA 90250
14655	Cornell Dubilier, Dept. 150, Ave. L, Newark, NJ 07101
18324	Signetics Corp., Sunnyvale, CA 94086
23880	Stanford Applied Engineering Inc., Santa Clara, CA 95050
23036	Pamotor Inc., Burlingame, CA 94010
24546	Corning Glass Works, Bradford, PA 16701
26654	Varadyne Ind., Santa Monica, CA 90404
27014	National Semiconductor Corp., Santa Clara, CA 95051
28480	Hewlett-Packard Co., Palo Alto, CA 94304
29990	ATC Div., Phase Ind., Huntington Station, NY 11746
34257	EIP Microwave Inc., Santa Clara, CA 95134
34649	Intel Corp., 3585 SW 198th Ave., Aloha, OR 97005
51406	Murata Corp. of America, 1148 Franklin Rd., Marietta, GA 30068
56289	Sprague Electric Co., North Adams, MA 01247
59660	Tusonix Inc., 2155 Forbes Bldg., Tucson, AZ 85705
70903	Belden Corp., Chicago, IL 60644
71590	Centralab Div., Globe-Union Inc., Milwaukee, WI 53201
72136	Electro Motive Corp., Sub. of Int. Elect. Corp., Florence, Santa Clara, CA 95050
72259	Nytronics Inc., Pelham Manor, NY 10803
72982	Erie Technological Products Inc., Erie, PA 16512
73445	Amperex Electronic Corp., Hicksville, NY 11802
80031	Mepco/Electra Inc., Morristown, NJ 07960
80740	Beckman Instruments Inc., Fullerton, CA 92634
81349	Military Specification
86797	Rogan Bros. Inc., Skokie, IL 60076
91637	Dale Electronics Inc., Columbus, NE 68601
95275	Vitramon I.c., Bridgeport, CT 06601
98291	Sealectro, Mamaroneck, NY 10544
99800	Delavan Div. American Precision Industries, East Aurora, NY 14052
	1, 11, 1002

de la deliminación deliminación delim	· ·		
ı		•	
			ť
			•
		,	•
			x
			· ·
			•