10 GHz and Up Contest Scoring Spreadsheet
with hints on the calculations

Courtney Duncan, N5BF
San Bernardino Microwave Society
Microwave Update, San Diego, October 2015

Motivation

Scoring in the American Radio Relay League (ARRL) 10 GHz and Up Contest
http://www.arrl.org/10-ghz-up involves counting QSOs, unique callsigns worked,
and great circle distance of each contact. There are many software tools and
smartphone apps out there to perform or aid with these calculations and logs but
the math and the logic are straightforward, well suited to a spreadsheet, and I get
nearly the same thrill from typing a formula into a spreadsheet cell and having it
instantly give me a correct result as I do from hearing my call come back from a
potential contest QSO partner. So in 2013 I took out a sheet of scratch paper,
opened a spreadsheet, and rolled my own. This paper describes the result in its
2015 incarnation. It is not a polished consumer product providing foolproof data
entry checks. The intent here, rather, is to utilize and explain the calculations as an
aid to anyone wanting to roll their own version too.

The Spreadsheet Approach

In the sample spreadsheet, the top of which is shown in Figure 1., [have used
the lines above row 30 as a general collection area for information that might be
operationally useful, like running scores per site roved and beacon headings, time
on the air, and rates. Itis all ad hoc; I just do calculations down below and link to
them up here. The idea is to make something of which that I can print out the first
page for field reference or as a contest summary.

The Microsoft Excel spreadsheet itself can be downloaded at
http://www.ham-radio.com/sbms/presentations/N5BF/2015_n5bf_10GHz_log.xlsx

and is filled out with my actual QSOs from the August weekend of the contest as
examples. Space is left for the September weekend.

The calculations discussed here underlie the log-entry rows beginning with
row 33. Below line 130 is a work area where the “useful information” calculations
for the top are actually performed. These include beacon headings and distances
and roving move distances. I've also just jotted down reference information, like the
calls of the other stations at some sites where I spent some time.

score summaries,
in progress

rormatting 7"~

A34 fx| 8/15/2015 v
TR B Y L M N0 P T S RS R [[R S— —g— — Y Z
1 |TmWknd1~ 16:30:00 NSBF 4.6 rate site score Q u dist best average
2 Tmwknd2 " 0:01:00 10 GHz only 0.0 DMO04ms 13209 43 27 10466 527 2434
3 TmTotal 16:31:00 NSBF op 46 DMO4ti 3106 19 4 2687 318 1414
4 2015 DMO3wt 1568 14 2 1354 137 96.7
5 Wknd 1 17883 76 33 14507 527 1909
6 | 00174533 radians in a degree
7 6378.137 Earth radius
8
9 Wknd 2
10 Grand 178837 76" 33”7 1as07” 527

12 |8/15/15-8/16/15 entered 8/27/15

distance and

site matrix DM04ms DMO4ti DMO4wt

13 all > 16 km DMO04ms) 71 131 °

13 P B 3 bearing to beacons

15 DMO3wt 0

16 Also Allison CM97bl 0.192

17 |8/15/15 Frazier Crew Nelson DN30vo 0.194

18 AA6IW Lars

19 |KD6BPP Kjell (not operating) 2013 10:42 16699 81 31 13599 427

20 |K6GZA Ron

21 |N6VI Marty 143 03 149 033 140 031 146 0.36 152 03
22 |NSBF Courtney m Ove Beacons PV to PV Sant to Sant Frazier to Frazier SDG to SDG Vacca to Vacca
23 |KEG6HPZ Glenn . DMO3ts DMO3ts DM13fr DM13fr DMO04ms DMO04ms DM12mgq DM12mq CM88wj CM88wj
24 d Istances DMO04ms 124 154 174 131) 297 141 433 3
25 |8/16/15 Secret Site 51 Crew DMO4ti 65 180 104 132 71 311 227 144 561 3
26 |NSBF Courtney DMO3wt 24 259 55 100 131 325 166 139 624 3
27 |N6TEB Dave

28

29

30 calls duped manually via autocomplete

31

32 |Date Time on off Q U Call deGrid toGrid Dist deBear toBear delon tolLon delat tolat dx dy dz chord arc curve
33 8/15/15 9:40 1 r r r r 0 0 0 0 0

34 WY 9:43 1 1 N6RMJ DMO04ms DMO4ti 71 131 311 e :118.95833 -118.375 34.7708333 34.3541667 0.00537738 -0.0076418 -0.0059887 0.01109854 70.7883909 1.000005
35 8/15/15 9:47 1 1 WB6NOA DMO04ms DM13co 169 140 321 -118 -117.79167 34.7708333 33.6041667 0.00938185 -0.0180705 -0.0168434 0.02642461 168.544659 1.00002
36 8/15/15 9:58 1 1 N6TEB DMO04ms DMO4tc 92 144 324 -118.95833 8.375 34.7708333 34.1041667 0.00421096 -0.0098013 -0.0095963 0.01434872 91.5189151 1.000008
37 8/15/15 10:02 1 1 wsQwW DMO04ms DM04am 96 253 73 -118.95833 -119.95833 34.7708333 345208333 -0.0137218 0.0049015 -0.0035896 0.01500662 95.715168 1.000009

row 34
QSO entry, calculations
described in text

Figure 1. Top of Spreadsheet

Contest rules limit participation to 24 hours within the period 0600 Saturday
to 2400 Sunday local time on each of the two weekends. Columns C, D, E, F, and G
are used to calculate time “on the air” per weekend, August being “weekend 1” and
September being “weekend 2”. The results appear in cells B1, B2, and B3. Row 33 is
the beginning of a session where a “1” (for weekend 1) appears in column C
indicating that I am QRV for the beginning of the contest (or segment) at 8/15/15
0940 (A33 and B33). This first segment (Frazier Mountain DM04ms) ends at line 77
with a “1” (for weekend 1) in the “off” (or QRT) column D. All the lines between QRV
and QRT are QSO log entries where column I (labeled “Q” for “QS0”) contains a “1”
for a valid QSO and column] (labeled “U” for “unique”) contains a “1” for a new
unique callsign (an “initial”) or a “0” for a callsign worked before, as from a different
location. These columns are summed up in the usual spreadsheet ways for the
scoring cells at the top of the spreadsheet.

As I enter callsigns, the tooltip in Excel will give me completion options for
entries previously made in that column. If I see the callsign I am entering in those
options, I know the call is not unique and has already been counted as unique
previously and so I enter “0” in the “unique” column. “Search” can also be used to
make sure the callsign (assuming it is typed correctly) has or has not appeared
before. There is no other auto-checking or guaranteeing that you are not cheating in
these fields as there might be in a real software product. These columns are just
done in this way to enable easy spreadsheet summing.

Once the rows are set up to make the distance and bearing calculations to be
described next, I enjoy entering all the QSO into the spreadsheet from my field note
“logs”. Itis like reliving the contest!

Calculating Latitude and Longitude from Grid Squares

Now for the interesting mathematics: the calculation of QSO distances and
bearings from six digit grid squares. Again, there is no validity checking in this code
(it is all worked up for the “happy” or “correct” data case). An entry error will result
in erroneous (likely entertainingly so) results.

Column L is the “from grid” labeled “deGrid” which is where I'm operating,
and is the report I gave in the QSO. Column M is the “to grid” labeled “toGrid” which
is the location I receive in the other station’s report. For correct calculations
hereafter, the first two characters must be upper case letters, the next two must be
numbers, and the final two must be lower case letters. The system, as it needs only
24 letters, does not use the letters “y” and “z” but, again, there is no checking here. A
typo of “DMO04tz” gives an equivalent grid to DM05tb due to wraparound of the
calculation. Put another way, “error in, error out.”

For viewing convenience, columns N, O, and P, the final results of the
calculations to follow to the right: distance, “bearing from me” and “bearing to me”
respectively, are placed next. These will be discussed at the end of the paper.
Column Q is blank to demark the work area to the right. A programmer interested
in appearance might hide all these calculation columns, but I enjoy looking at them
and keeping my eye on them for erroneous looking stuff, so I don'’t.

While this paper is not a tutorial on Microsoft Excel (for which one can use
the online help features and documentation), [will explain keywords relevant to the
calculations. (Translation to another spreadsheet or even a C program should be
straightforward.) For example, in converting from the alphanumeric grid square
designators to numerical latitudes and longitudes, it is necessary to get a numerical
interpretation of letters represented in ASCII. This is done with the “CODE()”
keyword where

CODE(“A™") =65

(decimal, I will not digress here into a discussion of the beauties of hexadecimal)
CODE(“B”") =66
CODE(“C) =67

CODE(“a”) = 97
CODE(“b”) =98

and so forth.
The design of the Maidenhead Grid Square system is as follows:

The first letter represents longitude beginning from the dateline (180
degrees) and proceeding eastward in 20-degree steps:

A represents -180 to -160,
B represents -160 to -140,

and so forth, where the convention is that west longitude is negative and east
longitude is positive.

The second letter represents latitude beginning from the South Pole in 10-
degree steps:

A represents -90 to -80,
B represents -80 to -70,

and so forth, where the convention is that south latitude is negative and north
latitude is positive.

The third character is a number representing the number of 2-degree steps
into the 20-degree segment represented by the first letter. For example “D_1_
“(where “_” means, “don’t care” in this example) represents the segment 118 to 116
west longitude.

The fourth character is a number that goes similarly with the second letter in
one-degree steps of latitude. For example “_M_4" represents the segment 34 to 35
degrees north latitude.

So, DM14 is bounded by -118 to -116 longitude and +34 to +35 latitude and
the DM 14 in the calculation so far means the west and south edges of the grid: -118
/ +34.

Finally, the fifth and sixth characters divide each 2 x 1 degree segment into
24 increments of longitude (5 minutes of arc each) and latitude (2.5 minutes of arc
each) respectively. Only the 24 letters “a” through “x” are used. The number 24 is
chosen because it is more commensurate with the 60 minutes of arc that degrees
are conventionally divided into than, for example, the 26 letters of the alphabet
would be.

Note that, by definition, a minute of arc in latitude is a nautical mile, so 6x6
grids are, worldwide, 2.5 nautical miles (4.63 kilometers) tall and 4x4 grid squares
are 60 nautical miles (111.111 kilometers) tall. By contrast, the size of a minute (or

degree) of arc in longitude is proportional to the cosine of the latitude. At the
equator (cosine(latitude=0) = 1), 6x6 grid squares are 5 nautical miles wide (9.26
kilometers) and have an aspect ratio of 2. At 60 north or south (cosine(latitude = 60
degrees) =.5) grid squares are 2.5 nautical mile (4.63 kilometer) literal squares, and
at higher latitudes, they are actually taller than wide! This is one reason why the
grids cover twice as much longitude as latitude. Also, the system must cover 360
degrees of longitude worldwide while there are only 180 degrees of latitude to be
represented.

This provides the background for understanding the calculation in column R
(“deLon”) which decodes the “deGrid” (entered by user) into longitude in decimal
degrees.

The calculations about to be described locate not the edge but the center of
the indicated 6x6 grid square, which is the convention for determining positions,
distances, and bearings from grid squares. Clearly, the position found can and will
be a few kilometers off from the true position depending on the station’s location in
the grid. The grid square system can be extended to additional digits for greater
precision but that is not done here or for this contest nor is greater precision
generally needed except for very close in contacts (a few kilometers) that might
occur within the same grid square or adjacent ones. These should be handled
separately and by other measurement means.

In the following, I break the single cell calculation out into its constituent
parts, explaining each one with comments, following the “//” markers to the right.
(This is a standard programming usage.) The calculation for row 34, the first actual
logbook entry is:

=|F(LEN(L34)=6, // OK, so there is a little “fat finger” checking.
// This makes sure there are 6 characters in deGrid.
/] If there are...

-180+(CODE(MID(L34,1,1))-CODE("A")*20
// This takes the first letter “D” in this case and
/| determines which 20-degree segment, starting
// at =180 degrees, it is. In this case
/] “D” - “A” is 3, so the west edge of the grid is
// -180 + 3*20 = -120

+VALUE(MID(L34,3,1))*2
// This takes the third character and just uses it as
// as the number of two-degree steps further east.
// In this case it’s “0” so we’re still at -120 degrees
// for the west edge.

+(CODE(MID(L34,5,1))-CODE("a")+0.5)/12
// Finally, the fifth character, an “m” in this case is
// used to find the distance east of -120.
// In this case “m” - “a” is 12, the “+0.5” puts it in
// the middle of the grid (rather than the west edge)
// at 12.5 /12 = 1.0416667 for a total of
// -120 + 1.0416667 = -118.958333 degrees.
// The “/12” divides two degrees into 24 parts,

“w " 1] ”

// “a” to “x”.

// The final “,0” refers to the length check at the

// very beginning. If there were not six characters

// just put a O here to keep the spreadsheet looking
// “clean” and indicate that this is not a log entry line.

Column S calculates the “toLon” from the “toGrid” in column M similarly.

Column T calculates “deLat” from the “deGrid” in column L similarly to the
longitude calculation:

=|F(LEN(L34)=6, // check the grid designator length, if OK...

-90+(CODE(MID(L34,2,1))-CODE("A")*10
/| Take the second character and find the number
// of 10-degree segments north of the South Pole
// (-90) to the south edge of the grid. In this case,
/] “M” - “A” = 12 so we’re at -90 + 120 = 30 north.

+VALUE(MID(L34,4,1))*1
// Plus the number of 1-degree segments north of that
// south edge. In this case it’s 4, so the south edge is
// 34 north.

+(CODE(MID(L34,6,1))-CODE("a")+0.5)/24
// Finally, find the number of 24ths of a degree north
/| of the south edge (60 minutes / 24 = 2.5 minutes)
// plus a half grid +0.5. In this case, “s” - “a” is 18
// soit’s 18.5 / 24 = 0.7708333 degrees for a total

// of 34.7708333 degrees.

// And finally the “,0” which answers the “fat finger”
// or “not a log entry” check at the beginning of the
// line.

Similarly, column U calculates the “toLat” from the “toGrid” in column M.
Calculating Distance from Latitudes and Longitudes

Now we have all we need to calculate distances and bearings. We could just
go to spherical trigonometry at this point (discussed more below) but when I first
set this up, I decided to use unit vectors, as follows.

Although the earth is an ellipsoid, being about 21 km smaller in radius at the
poles than at the equator (due to the hydrodynamic balancing of centripetal force
due to its 24 hour rotation), this fact is negligible for the kilometer-class calculations
being performed here. The earth is treated as a perfect sphere of radius one. Every
position on the surface can then be represented by a vector from the center to the
surface, with length one, whose Cartesian coordinates (X, Y, and Z) are
trigonometric functions of the latitude and longitude angles. All calculations and
distances are then in radians on this “unit sphere” and are converted, at the end, to
kilometers by multiplying by the earth radius.

For these calculations, I use the convention that longitude east of Greenwich
is positive and west is negative, preserving a right handed X/Y/Z coordinate system
for the earth. (+Xis 0 latitude/0 longitude in the Atlantic off Gabon, +Y is at the
equator south of India, and +Z is the North Pole.) This matches the right-handed
convention of west longitude being negative and north latitude being positive.

Column V calculates dx, the distance from me “de” to the other station “to” in
the X direction.

=CO0S(S34*Radians)*COS(U34*Radians)
/] cos(toLon) * cos(toLat) = the X component of “to”

-COS(R34*Radians)*COS(T34*Radians)
/| cos(delLon) * cos(deLat) = the X component of “de”
// Noting that computers work in radians
// Cell A6 is the degrees to radians constant.

Similarly column W calculates dy.

=SIN(S34*Radians)*COS(U34*Radians)
// sin(toLon) * cos(toLat) = the Y component of “to”

-SIN(R34*Radians)*COS(T34*Radians)
// sin(deLon) * cos(deLat) = the Y component of “de”

And column X calculates dz.

=SIN(U34*Radians)
// sin(toLat) = the Z component of “to”

-SIN(T34*Radians)
// sin(delLat) = the Z component of “de”

We now have the direction from my station to the other stationin X, Y, Z
coordinates in units of earth radius. The length of this vector, calculated in column 'Y,
is just the Pythagorean:

=SQRT(V34*V34+W34*W34+X34*X34)
// That is, sqrt(dxA2 + dyA2 + dzA2)

But this is the “chord” or straight line vector distance between the two
stations that passes through the inside of the earth, not the great circle distance
along the surface on which scoring and “as the crow flies” distances are based.
Column Z calculates this surface distance in radians and multiplies it by the radius of
the earth to finally give kilometers.

=2*ASIN(Y34/2)*Rearth
// That is, 2 * arcSin(half of the chord)
/] (This works because the radius=hypotenuse = 1
// then times the radius of the earth.

This is described pictorially in Figure 2.

Earth radius, cell A7, is 6378.137 kilometers, from the WGS-84 coordinate
system used by the Global Positioning System (GPS). This could easily be changed
another earth radius if needed, or to Mars or another planet in this one cell, though
the need for this (that is, microwave contesting on Mars) is, sadly, not near term.

Great Circle

“— radius

chord /2

Great Circle Distance = 2Q*radius

Figure 2. Chord to Great Circle

Calculate Bearings from “de” to “to” and from “to” to “de”
Now we calculate heading from “de” to “to” (my heading) and from “to” to “de”
(the other station’s reciprocal heading) using the well known Law of Sines for

spherical trigonometry:

sin A sin B sin C

sin a sinb sin ¢

That is, the ratio of sines of corners of the spherical triangle with the sines of
the opposite sides are equal for all three corners and sides.

We use the North Pole for corner C (Figure 3) where the angle is just the
difference of longitudes. We have just calculated opposite side c, the arc distance
between stations so we have the ratio ‘sin C / sin ¢’ which allows us to solve for the
unknowns ‘sin A’ and ‘sin B’ which will give us the angles with the lines of longitude
and allow us to ultimately determine bearings.

(Side c, the arc distance between stations, could also have been calculated
with spherical trigonometry using the other well known “cosine rule”

cos c = cos a*cos b + sin a*sin b * cos C

but I had already done it the other way by the time I realized this, both methods get
the same answer, of course, and I didn’t deem it worth going to the trouble to
change. See

https://en.wikipedia.org/wiki/Spherical trigonometry

and numerous other references.)

North Pole

sin(A) = sin(a)*sin(C)/sin(c) C

Sin(B) = sin(b)*sin(C)/sin(c)

a =90 - latitude,

b =90 - latitude,

¢ = Great Circle between stations
A = bearing at “to”*

B = bearing at “de”*

C = longitude, -longitude,,
station “de” *Quadrant of sine unresolved

station “to” See Figure 4.

Figure 3. Great Circle Bearings

So, column AB finds the intermediate result

=SIN((S34-R34)*Radians)/SIN(Z34/Rearth)

// That is sin(toLon - deLon) / sin(arc distance)
// which is sin(C) / sin(c)
/] with ‘arc distance’ converted back to radians.

Column AC finds the angle from “de” to “to” with the longitude (north-south)
line.

=(ASIN(COS(U34*Radians)*AB34)/Radians)
// That is sin(B) = sin(b) * sin(C)/sin(c)
/| converted to degrees.
/] (COS() is used since sin(b) = cos(90-b)
// and 90-b is the latitude value we already have.)

And column AD finds the angle from “to” to “de” with the longitude (north-
south) line

=(ASIN(COS(T34*Radians)*-AB34)/Radians)
// That is sin(A) = sin(a) * sin(C)/sin(c)
// converted to degrees.
// (COS() is used since sin(a) = cos(90-a)
// and 90-a is the latitude value we already have.)

In all trigonometric arc functions there is an ambiguity of direction
depending on what quadrant the actual angle is in. In this case, if the “to” location is
further north than the “de” location, the angle B we have just calculated is with the
meridian going north (Figure 4). If this number is greater than zero, it is the true
bearing. Ifitis less than zero, we just add 360 degrees (one circle) to make it into an
equivalent positive number

If, on the other hand, the “to” station is further south than the “de” station,
the angle B is with the meridian going south and the true bearing is 180 degrees
minus that angle. This is handled for the “deBearing” in column AE

=|F(X34<0,
/] if dz < 0, “to” is south of “de”

180-AC34,
// bearing = 180 - B
// if B < 0, this just makes bearing > 180
// which is fine (e.g. 225 degrees)

/] else dz > 0, “to” is north of “de”
IF(AC34<0,360+AC34,
// if B <0, report 360 + B (e.g. 315 degrees)
AC34))
/| if B >= 0, the angle with the north going meridian
// is the bearing, just report B.

Similarly, the bearing from “to” do “de” is resolved in “toBearing” in column
AF

=|F(X34>0,
/] if dz > 0, “de” is south of “to”

180-AD34,
// bearing = 180 - A
// if A <0, this just makes bearing > 180
// which is fine (e.g. 225 degrees)

/] else dz < 0, “de” is north of “to”
IF(AD34<0,360+AD34,

/] if A <O, report 360 + A (e.g. 315 degrees)
AD34))

/] if A>= 0, the angle with the north going meridian

// is the bearing, just report A.

For stations due north and south, or for those close enough to neglect the
curvature of the earth and consider it as a plane surface, the difference between
these headings should be 180 degrees. For regional or adjacent state distances the
difference should be 180 degrees within a degree or two. This is checked in column
AG (just as a programmers sanity check).

north
The angles @ and
180 — @ have
If@<0 2 .
. the same sine.
just add 360 degrees
to get into 270-359 range. (1) If Latitude,, > Latitude,,
target is more north.
Bearing is @.
west east
180-@
@ If Latitude,, < Latitude,,
If @ < 0 with target target is more south.
more south, bearing Bearing is 180 — @.
Of 180 - @ is in the
range 180-270.
south

Figure 4. Arcsine Resolution

Rounding and Reporting

This completes the calculations and the results are now rounded into integer
kilometers and degrees and placed back in columns N, O, and P for distance, bearing
from me, and bearing from other station to me, respectively. The rounding is done
like this

=INT(Z34+0.5)
// Add half a kilometer and truncate to the next
// integer down. This makes
/] 234.4 km -> INT(234.9) = 234
/] 234.5 km -> INT(235.0) = 235
/] 234.6 km -> INT(235.1) = 235
// which is the appropriate convention
// for rounding and scoring.

General Use

This row can be copied as many times as desired for log entries or for helper
calculations. Simply copy the row and enter the desired “de” and “to” grid
designators in columns L and M.

While filling out the August 2015 portion of my log into this spreadsheet, I
checked all of these distance and bearing calculations with online grid square
calculators and all results agreed within the integer round-off used, including those
that were “close”, i.e. 249.49 degrees rounding to 249.

This gives an integer number of kilometers, which is used for scoring, and an
integer number of degrees for headings, which is about as good as you can do in a
typical roving setup and plenty to get within “peak up” range. Summing the integer
values in column N for total distance points avoids summing errors that might occur
if fractional kilometers were carried in that column.

The kilometer distances are used in the score summaries up in the
convenience area at the top. Also, I've calculated beacon bearings and distances and
roving move distances to check against the 16 km move rule. I've used other cells as
a scratch pad for useful operational information, either as a computer tool in the
field or printout of the top part of the spreadsheet.

Summary
This paper has presented the calculations and example spreadsheet for

calculating points, scores, and times for the ARRL 10 GHz and Up Contest held on
one weekend in August and one weekend in September each year. The calculations

performed on first log entry in the spreadsheet, row 34, are described in detail. This
row is then replicated throughout the spreadsheet for other QSO log entries or for
helpful results like the distance and bearing to a beacon, or the distance of a rover
move.

Partial columns can then be summed for scoring and otherwise analyzed for
timekeeping purposes.

The spreadsheet is designed to be useful for this particular event but not
foolproof. There is little checking for typos or erroneous data entry. The operator is
expected to know that a QSO distance of a million kilometers or a callsign with three
numbers in it is an error by inspection and look for entry errors manually, not by
user interface robustness.

